Citation: XU Zhong-Hang,  WU Yuan-Yu,  LI Chun-Sheng,  HE Cheng-Yan,  FANG Xue-Dong. Selective Labeling and Proteomic Analysis of Free Thiols in Mitochondrial Proteins from Human Colon Carcinoma[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(1): 84-92. doi: 10.19756/j.issn.0253-3820.221521 shu

Selective Labeling and Proteomic Analysis of Free Thiols in Mitochondrial Proteins from Human Colon Carcinoma

  • Corresponding author: HE Cheng-Yan,  FANG Xue-Dong, 
  • Received Date: 23 October 2022
    Revised Date: 14 November 2022

    Fund Project: Supported by the Jilin Province Science and Technology Department (Nos.20200404193YY, 20190201008JC).

  • The redox state of the thiol groups of protein cysteine residues is closely related to the local redox level of cells. When these thiol groups are oxidized or reduced, they can greatly affect protein structure, thereby modulating their biological functions and eventually affecting the biological processes and cell fate. In this study, a strategy aiming at selectively labeling the free thiol group of protein cysteine was proposed. In this method, N-ethylmaleimide (NEM), a thiol reactive reagent, was used to block the free thiol groups on the proteins prior to the routine sample processing in proteomics flow (Reduction of disulfide bond by dithiothreitol, alkylation blockage byiodoacetamide). Therefore, the original free thiol groups, as well as those generated from the reduction treatment by dithiothreitol, were blocked with two different thiol reactive reagents with different molecular weights, leading to specific identification of the original free thiol groups within proteins. By using this strategy, a proteomic investigation was performed on the free thiol groups of mitochondrial proteins in colorectal cancer tissues. A total of 1549 mitochondrial proteins were identified, including protein disulfide-isomerase A3, peroxiredoxin-1, mitochondrial NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial inner membrane protein, mitochondrial acetyl-CoA acyltransferase, malate dehydrogenase,calnexin, mitochondrial aspartate aminotransferase, mitochondrial succinate dehydrogenase [ubiquinone] iron-sulfur subunit, etc. Specially, 348 peptides containing free sulfhydryl groups were identified, belonging to 253 proteins. The proteomics data of the mitochondrial proteins as well as the peptides containing free thiols in colon cancer tissues could provide new ideas for further investigation on the redox targets as well as novel biomarkers in mitochondrial proteins in colon cancer.
  • 加载中
    1. [1]

      KUO C M, WEI S Y, DU S H, LIN J L, CHU C H, CHEN C H, TAI J H, CHEN S H. Anal. Chem., 2021, 93(3):1544-1552.

    2. [2]

      REINA S, PITTALÀMG G, GUARINO F, MESSINA A, DE PINTO V, FOTI S, SALETTI R. Front. Cell Dev. Biol., 2020, 8:397.

    3. [3]

      MARTÍ M C, JIMÉNEZ A, SEVILLA F. Front. Plant Sci., 2020, 11:571288.

    4. [4]

      HABICH M, SALSCHEIDER S L, RIEMER J. Br. J. Pharmacol., 2019, 176(4):514-531.

    5. [5]

      MURPHY B, BHATTACHARYA R, MUKHERJEE P. FASEB J., 2019, 33(12):13098-13125.

    6. [6]

      PEÑA F J, O'FLAHERTY C, RODRÍGUEZ JM O, CANO FE M, GAITSKELL-PHILLIPS G L, GIL M C, FERRUSOLA C O. Antioxidants (Basel), 2019, 8(11):567.

    7. [7]

      KARSEN H, BINICI I, SUNNETCIOGLU M, BARAN A I, CEYLAN M R, SELEK S, CELIK H. Afr. Health Sci., 2012, 12(2):114-118.

    8. [8]

      SHI Y, CARROLL K S. Acc. Chem. Res., 2020, 53(1):20-31.

    9. [9]

      SUN N, WANG Y, WANG J, SUN W, YANG J, LIU N. Anal. Chem., 2020, 92(12):8292-8297.

    10. [10]

      WANG R, WANG G. Adv. Exp. Med. Biol., 2019, 1206:421-434.

    11. [11]

      ROCA-AGUJETAS V, DE DIOS C, LESTON L, MARI M, MORALES A, COLELL A. Oxid. Med. Cell Longevity, 2019, 2019:3809308.

    12. [12]

      MURATA D, ARAI K, IIJIMA M, SESAKI H. J. Biochem., 2020, 167(3):233-241.

    13. [13]

      PUGH J N, STRETTON C, MCDONAGH B, BROWNRIDGE P, MCARDLE A, JACKSON M J, CLOSE G L. Free Radic. Biol. Med., 2021, 177:88-99.

    14. [14]

      KIROVA D G, JUDASOVA K, VORHAUSER J, ZERJATKE T, LEUNG J K, GLAUCHE I, MANSFELD J. Dev. Cell, 2022, 57(14):1712-1727.e9.

    15. [15]

      SHEKHOVA E, IVANOVA L, KRVGER T, STROE M C, MACHELEIDT J, KNIEMEYER O, BRAKHAGE A A. Proteomics, 2019, 19(5):e1800339.

    16. [16]

      EFFENDI-YS R. Acta Med. Indones., 2022, 54(3):476-486.

    17. [17]

      CASADO-PELAEZ M, BUENO-COSTA A, ESTELLER M. Trends Cancer, 2022, 8(10):820-838.

    18. [18]

      WU Z, ZUO M, ZENG L, CUI K, LIU B, YAN C, CHEN L, DONG J, SHANGGUAN F, HU W, HE H, LU B, SONG Z. EMBO Rep., 2021, 22(1):e50827.

    19. [19]

      YIN K, LEE J, LIU Z, KIM H, MARTIN D R, WU D, LIU M, XUE X. Cell Death Differ., 2021, 28(8):2421-2435.

    20. [20]

      GWAK E J, KIM D, HWANG H Y, KWON H J. Cancers (Basel), 2022, 14(8):1883.

    21. [21]

      SMYTH D G, BLUMENFELD O O, KONIGSBERG W. Biochem J., 1964, 91(3):589-595.

  • 加载中
    1. [1]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    2. [2]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    3. [3]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    4. [4]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    8. [8]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    9. [9]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    15. [15]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    16. [16]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    17. [17]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    18. [18]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    19. [19]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    20. [20]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

Metrics
  • PDF Downloads(7)
  • Abstract views(676)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return