Citation:
XU Zhong-Hang, WU Yuan-Yu, LI Chun-Sheng, HE Cheng-Yan, FANG Xue-Dong. Selective Labeling and Proteomic Analysis of Free Thiols in Mitochondrial Proteins from Human Colon Carcinoma[J]. Chinese Journal of Analytical Chemistry,
;2023, 51(1): 84-92.
doi:
10.19756/j.issn.0253-3820.221521
-
The redox state of the thiol groups of protein cysteine residues is closely related to the local redox level of cells. When these thiol groups are oxidized or reduced, they can greatly affect protein structure, thereby modulating their biological functions and eventually affecting the biological processes and cell fate. In this study, a strategy aiming at selectively labeling the free thiol group of protein cysteine was proposed. In this method, N-ethylmaleimide (NEM), a thiol reactive reagent, was used to block the free thiol groups on the proteins prior to the routine sample processing in proteomics flow (Reduction of disulfide bond by dithiothreitol, alkylation blockage byiodoacetamide). Therefore, the original free thiol groups, as well as those generated from the reduction treatment by dithiothreitol, were blocked with two different thiol reactive reagents with different molecular weights, leading to specific identification of the original free thiol groups within proteins. By using this strategy, a proteomic investigation was performed on the free thiol groups of mitochondrial proteins in colorectal cancer tissues. A total of 1549 mitochondrial proteins were identified, including protein disulfide-isomerase A3, peroxiredoxin-1, mitochondrial NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial inner membrane protein, mitochondrial acetyl-CoA acyltransferase, malate dehydrogenase,calnexin, mitochondrial aspartate aminotransferase, mitochondrial succinate dehydrogenase [ubiquinone] iron-sulfur subunit, etc. Specially, 348 peptides containing free sulfhydryl groups were identified, belonging to 253 proteins. The proteomics data of the mitochondrial proteins as well as the peptides containing free thiols in colon cancer tissues could provide new ideas for further investigation on the redox targets as well as novel biomarkers in mitochondrial proteins in colon cancer.
-
Keywords:
- Mitochondria,
- Colon cancer,
- Proteome,
- Free thiol,
- Redox
-
-
-
[1]
KUO C M, WEI S Y, DU S H, LIN J L, CHU C H, CHEN C H, TAI J H, CHEN S H. Anal. Chem., 2021, 93(3):1544-1552.
-
[2]
REINA S, PITTALÀMG G, GUARINO F, MESSINA A, DE PINTO V, FOTI S, SALETTI R. Front. Cell Dev. Biol., 2020, 8:397.
-
[3]
MARTÍ M C, JIMÉNEZ A, SEVILLA F. Front. Plant Sci., 2020, 11:571288.
-
[4]
HABICH M, SALSCHEIDER S L, RIEMER J. Br. J. Pharmacol., 2019, 176(4):514-531.
-
[5]
MURPHY B, BHATTACHARYA R, MUKHERJEE P. FASEB J., 2019, 33(12):13098-13125.
-
[6]
PEÑA F J, O'FLAHERTY C, RODRÍGUEZ JM O, CANO FE M, GAITSKELL-PHILLIPS G L, GIL M C, FERRUSOLA C O. Antioxidants (Basel), 2019, 8(11):567.
-
[7]
KARSEN H, BINICI I, SUNNETCIOGLU M, BARAN A I, CEYLAN M R, SELEK S, CELIK H. Afr. Health Sci., 2012, 12(2):114-118.
-
[8]
SHI Y, CARROLL K S. Acc. Chem. Res., 2020, 53(1):20-31.
-
[9]
SUN N, WANG Y, WANG J, SUN W, YANG J, LIU N. Anal. Chem., 2020, 92(12):8292-8297.
-
[10]
WANG R, WANG G. Adv. Exp. Med. Biol., 2019, 1206:421-434.
-
[11]
ROCA-AGUJETAS V, DE DIOS C, LESTON L, MARI M, MORALES A, COLELL A. Oxid. Med. Cell Longevity, 2019, 2019:3809308.
-
[12]
MURATA D, ARAI K, IIJIMA M, SESAKI H. J. Biochem., 2020, 167(3):233-241.
-
[13]
PUGH J N, STRETTON C, MCDONAGH B, BROWNRIDGE P, MCARDLE A, JACKSON M J, CLOSE G L. Free Radic. Biol. Med., 2021, 177:88-99.
-
[14]
KIROVA D G, JUDASOVA K, VORHAUSER J, ZERJATKE T, LEUNG J K, GLAUCHE I, MANSFELD J. Dev. Cell, 2022, 57(14):1712-1727.e9.
-
[15]
SHEKHOVA E, IVANOVA L, KRVGER T, STROE M C, MACHELEIDT J, KNIEMEYER O, BRAKHAGE A A. Proteomics, 2019, 19(5):e1800339.
-
[16]
EFFENDI-YS R. Acta Med. Indones., 2022, 54(3):476-486.
-
[17]
CASADO-PELAEZ M, BUENO-COSTA A, ESTELLER M. Trends Cancer, 2022, 8(10):820-838.
-
[18]
WU Z, ZUO M, ZENG L, CUI K, LIU B, YAN C, CHEN L, DONG J, SHANGGUAN F, HU W, HE H, LU B, SONG Z. EMBO Rep., 2021, 22(1):e50827.
-
[19]
YIN K, LEE J, LIU Z, KIM H, MARTIN D R, WU D, LIU M, XUE X. Cell Death Differ., 2021, 28(8):2421-2435.
-
[20]
GWAK E J, KIM D, HWANG H Y, KWON H J. Cancers (Basel), 2022, 14(8):1883.
-
[21]
SMYTH D G, BLUMENFELD O O, KONIGSBERG W. Biochem J., 1964, 91(3):589-595.
-
[1]
-
-
-
[1]
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
-
[2]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[3]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[4]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[5]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[6]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[7]
Hui Shi , Shuangyan Huan , Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042
-
[8]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[9]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[10]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[11]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[12]
Tingting Jiang , Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007
-
[13]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[14]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[15]
Lilong Gao , Yuhao Zhai , Dongdong Zhang , Linjun Huang , Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143
-
[16]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[17]
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362
-
[18]
Qin Tu , Anju Tao , Tongtong Ma , Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062
-
[19]
Lina Feng , Guoyu Jiang , Xiaoxia Jian , Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171
-
[20]
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
-
[1]
Metrics
- PDF Downloads(7)
- Abstract views(676)
- HTML views(83)