Citation: YU Jing,  YAO Zhi-Hao,  HE Kai-Yu,  XING Bing-Cong,  WANG Qiang,  CHENG Ke-Jun,  WANG Liu,  XU Xia-Hong. Nanomaterials-based Optical Biosensors for Detection of Mycotoxins in Traditional Chinese Medicine[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 472-483. doi: 10.19756/j.issn.0253-3820.221510 shu

Nanomaterials-based Optical Biosensors for Detection of Mycotoxins in Traditional Chinese Medicine

  • Corresponding author: CHENG Ke-Jun,  WANG Liu,  XU Xia-Hong, 
  • Received Date: 13 October 2022
    Revised Date: 7 February 2023

    Fund Project: Supported by the Key Research and Development Program of Zhejiang Province, China (No. 2021C02062), the National Natural Science Foundation of China (Nos. 32172307, 32072303) and the Scientific Research Project of Department of Education of Zhejiang Province, China (No. Y202044948).

  • With the rapid development of traditional Chinese medicine (TCM) industry, the demand of TCM is increasing. The quality and safety of TCM are attracting more and more attention. Mycotoxin pollution, which not only affects the quality, and in serious cases, also may cause carcinogenic, teratogenic and mutagenic effects on human body, has become one of the key safety issues of TCM. Rapid and accurate detection of mycotoxins in TCM is essential to ensure the quality and safety. Optical biosensors have been widely applied to rapid detection of mycotoxins due to their advantages such as simplicity to operate, fast response, high sensitivity, and good accuracy. Notably, nanomaterials are extensively used in optical biosensors owing to their unique physicochemical and catalytic properties. This review summarized the optical biosensors for mycotoxins in recent years. The principles, application characteristics and construction methods progress of optical biosensors were emphasized. The optical biosensors were classified into fluorescence, colorimetry, chemiluminescence, surface enhanced Raman scattering and polarized light for detailed discussion. The effects of the main matrix components of TCM on optical biosensors were comprehensively discussed. The challenges and perspectives of optical biosensors for detection of mycotoxins in TCM were highlighted. It was aimed to provide guidance for sensitive, accurate and convenient supervision of the quality of Chinese medicinal materials.
  • 加载中
    1. [1]

    2. [2]

      LYU M, FAN G, XIAO G, WANG T, XU D, GAO J, GE S, LI Q, MA Y, ZHANG H, WANG J, CUI Y, ZHANG J, ZHU Y, ZHANG B. Acta Pharm. Sin. B, 2021, 11(11):3337-3363.

    3. [3]

      JIA Q, WANG L, ZHANG X, DING Y, LI H, YANG Y, ZHANG A, LI Y, LV S, ZHANG J. Pharmacol. Res., 2020, 151:104552.

    4. [4]

      JIANG H, TU H, JIN Y, WU X, LUO Z, CHEN Y, ZHANG D, WU B, WEI Y, YANG Y, ZHOU F. Blood, 2020, 136(Supplement 1):31-32.

    5. [5]

      YOU L, LIANG K, AN R, WANG X. Pharmacol. Res., 2022, 182:106314.

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

      YUE Y T, ZHANG X F, OUYANG Z, GAO W W, WU J, YANG M H. Chromatographia, 2009, 70(9-10):1495-1499.

    17. [17]

      LIU Q, XIAO C, LIU H, HU Y, GUO W, KONG W. Ind. Crops Prod., 2019, 127:1-10.

    18. [18]

      CHO H D, SUH J H, FENG S, EOM T, KIM J, HYUN S M, KIM J, WANG Y, HAN S B. Food Control, 2019, 96:517-526.

    19. [19]

      YU Y, LI G. J. Hazard. Mater., 2022, 422:126927.

    20. [20]

      HU X, ZHANG P, WANG D, JIANG J, CHEN X, LIU Y, ZHANG Z, TANG B Z, LI P. Biosens. Bioelectron., 2021, 182:113188.

    21. [21]

      HE K, SUN L, WANG L, LI W, HU G, JI X, ZHANG Y, XU X. J. Hazard. Mater., 2022, 423:126962.

    22. [22]

      CHEN Y, LAI Z, ZHANG X, FAN Z, HE Q, TAN C, ZHANG H. Nat. Rev. Chem., 2020, 4(5):243-256.

    23. [23]

      SINGH A K, SRI S, GARIMELLA L B V S, DHIMAN T K, SEN S, SOLANKI P R. ACS Appl. Bio Mater., 2022, 5(3):1179-1186.

    24. [24]

      SONG X, DING Q, PU Y, ZHANG J, SUN R, YIN L, WEI W, LIU S. Biosens. Bioelectron., 2021, 192:113537.

    25. [25]

      RESCH-GENGER U, GRABOLLE M, CAVALIERE-JARICOT S, NITSCHKE R, NANN T. Nat. Methods, 2008, 5(9):763-775.

    26. [26]

      TINNEFELD P, CORDES T. Nat. Methods, 2012, 9(5):426-427.

    27. [27]

      ZHANG X, HU Y, YANG X, TANG Y, HAN S, KANG A, DENG H, CHI Y, ZHU D, LU Y. Biosens. Bioelectron., 2019, 138:111314.

    28. [28]

      ZHANG X L, WEI C B, LI Y, YU D S. TrAC, Trends Anal. Chem., 2019, 116:109-121.

    29. [29]

      WANG R, LU K Q, TANG Z R, XU Y J. J. Mater. Chem. A, 2017, 5(8):3717-3734.

    30. [30]

      WANG C, ZHANG W, QIAN J, WANG L, REN Y, WANG Y, XU M, HUANG X. Anal. Methods, 2021, 13(4):462-468.

    31. [31]

      TANG Z, LIU X, SU B, CHEN Q, CAO H, YUN Y, XU Y, HAMMOCK B D. J. Hazard. Mater., 2020, 387:121678.

    32. [32]

      BRUCE V J, MCNAUGHTON B R. Anal. Chem., 2017, 89(7):3819-3823.

    33. [33]

      SU B, ZHANG Z, SUN Z, TANG Z, XIE X, CHEN Q, CAO H, YU X, XU Y, LIU X, HAMMOCK B D. J. Hazard. Mater., 2022, 422:126838.

    34. [34]

      QIAN J, CUI H, LU X, WANG C, AN K, HAO N, WANG K. Chem. Eng. J., 2020, 401:126017.

    35. [35]

      LI Y, JIA D, REN W, SHI F, LIU C. Adv. Funct. Mater., 2019, 29(32):1903191.

    36. [36]

      XU Z, LI Q X, ZHANG L W, CHEN M L, TU J, CHEN W, ZHU Y Y, CHENG Y H. Sens. Actuators, B, 2022, 352:131050.

    37. [37]

      ZHAO X, WANG Y, LI J, HUO B, HUANG H, BAI J, PENG Y, LI S, HAN D, REN S, WANG J, GAO Z. Anal. Chim. Acta, 2021, 1160:338450.

    38. [38]

      LIN X, LI C, MENG X, YU W, DUAN N, WANG Z, WU S. J. Hazard. Mater., 2022, 433:128750.

    39. [39]

      TIAN T, QIU Z, JIANG Y, ZHU D, ZHOU X. Biosens. Bioelectron., 2022, 196:113701.

    40. [40]

      FU X, SUN J, YE Y, ZHANG Y, SUN X. Biosens. Bioelectron., 2022, 195:113682.

    41. [41]

      KIM K, JO E J, LEE K, PARK J, JUNG G Y, SHIN Y B, LEE L P, KIM M G. Biosens. Bioelectron., 2020, 150:111885.

    42. [42]

      NEW S Y, LEE S T, SU X D. Nanoscale, 2016, 8(41):17729-17746.

    43. [43]

      MA L, WANG J, LI Y, LIAO D, ZHANG W, HAN X, MAN S. J. Hazard. Mater., 2023, 443:130234.

    44. [44]

      LI D, CHEN Z, MEI X. Adv. Colloid Interface Sci., 2017, 250:25-39.

    45. [45]

      GUO H L, MA P F, LI K, ZHANG S X, ZHANG Y, GUO H Q, WANG Z P. Sens. Actuators, B, 2022, 358:131484.

    46. [46]

      WU H, WU J, LIU Y L, WANG H Y, ZOU P. Sens. Actuators, B, 2020, 321:128599.

    47. [47]

      ZHANG X, ZHI H, WANG F, ZHU M, MENG H, WAN P, FENG L. Anal. Chem., 2022, 94(5):2569-2577.

    48. [48]

      ZHU H, CAI Y, QILENG A, QUAN Z, ZENG W, HE K, LIU Y. J. Hazard. Mater., 2021, 411:125090.

    49. [49]

      KUMAR M, SINGH G, KAUR N, SINGH N. ACS Appl. Mater. Interfaces, 2022, 14(1):910-919.

    50. [50]

      SUN Y F, LI S, CHEN R P, WU P, LIANG J. Sens. Actuators, B, 2020, 311:127912.

    51. [51]

      TIAN F, ZHOU J, FU R, CUI Y, ZHAO Q, JIAO B, HE Y. Food Chem., 2020, 320:126607.

    52. [52]

      ZHU H, LIU C, LIU X, QUAN Z, LIU W, LIU Y. Microchim. Acta, 2021, 188(3):62.

    53. [53]

      HE Y, TIAN F, ZHOU J, ZHAO Q, FU R, JIAO B. J. Hazard. Mater., 2020, 388:121758.

    54. [54]

      LERDSRI J, THUNKHAMRAK C, JAKMUNEE J. Food Control, 2021, 130:108323.

    55. [55]

      ALDEWACHI H, CHALATI T, WOODROOFE M N, BRICKLEBANK N, SHARRACK B, GARDINER P. Nanoscale, 2018, 10(1):18-33.

    56. [56]

      WEI H, GAO L, FAN K, LIU J, HE J, QU X, DONG S, WANG E, YAN X. Nano Today, 2021, 40:101269.

    57. [57]

      WEI H, WANG E. Chem. Soc. Rev., 2013, 42(14):6060-6093.

    58. [58]

      YANG Y, YIN Y G, LI X L, WANG S, DONG Y Y. Sens. Actuators, B, 2020, 319:128250.

    59. [59]

      QIAN J, REN C, WANG C, AN K, CUI H, HAO N, WANG K. Biosens. Bioelectron., 2020, 166:112443.

    60. [60]

      ZHANG X, ZHI H, ZHU M, WANG F, MENG H, FENG L. Biosens. Bioelectron., 2021, 180:113146.

    61. [61]

      KHANSILI N, MURALI KRISHNA P. ACS Omega, 2021, 6(23):14911-14925.

    62. [62]

      LI M, LI D Y, LI Z Y, HU R, YANG Y H, YANG T. Biosens. Bioelectron., 2022, 209:114241.

    63. [63]

      SUN Y, LV Y, QI S, ZHANG Y, WANG Z. Food Chem., 2022, 371:131145.

    64. [64]

      GONÇALVES I, NUNES C, MENDES S, MARTINS L O, FERREIRA P, COIMBRA M A. Carbohydrate Polym., 2017, 175:628-635.

    65. [65]

      LV X, FRAHAT FODA M, HE J, ZHOU J, CAI J. Food Chem., 2023, 401:134144.

    66. [66]

      CHANDROSS E A. Tetrahedron Lett., 1963, 4(12):761-765.

    67. [67]

      LIU X X, YANG F, LI D X, YUAN R, XIANG Y. Sens. Actuators, B, 2020, 305:127405.

    68. [68]

      LU Y, WEI M, WANG C, WEI W, LIU Y. Nanoscale, 2020, 12(8):4959-4967.

    69. [69]

      SUN X, LEI J, JIN Y, LI B. Anal. Chem., 2020, 92(17):11860-11868.

    70. [70]

      LI Z, WANG L, YUAN Z, LU C. Chem. Commun., 2019, 55(5):679-682.

    71. [71]

      JIANG F, LI P, ZONG C, YANG H. Anal. Chim. Acta, 2020, 1114:58-65.

    72. [72]

      LV X Y, XU X Y, MIAO T, ZANG X F, GENG C, LI Y P, CUI B, FANG Y S. Sens. Actuators, B, 2022, 352:131026.

    73. [73]

      LU L, YUAN W, XIONG Q, WANG M, LIU Y, CAO M, XIONG X. Anal. Chim. Acta, 2021, 1141:83-90.

    74. [74]

      LI Y, LIU D, MENG S, ZHANG J, LI L, YOU T. Anal. Chem., 2022, 94(2):1294-1301.

    75. [75]

      LI L, LIU X, HE S, CAO H, SU B, HUANG T, CHEN Q, LIU M, YANG D P. ACS Omega, 2021, 6(44):30148-30156.

    76. [76]

      SUN M F, LIU J L, CHAI Y Q, ZHANG J, TANG Y, YUAN R. Anal. Chem., 2019, 91(12):7765-7773.

    77. [77]

      ZHOU Y, WANG H, ZHUO Y, CHAI Y, YUAN R. Anal. Chem., 2017, 89(6):3732-3738.

    78. [78]

      ZHAO L, SONG X, LI Y, JIA H, ZHANG N, WEI Q, WU D, JU H. Biosens. Bioelectron., 2023, 221:114925.

    79. [79]

      WANG Y, ZHAO G, CHI H, YANG S, NIU Q, WU D, CAO W, LI T, MA H, WEI Q. J. Am. Chem. Soc., 2021, 143(1):504-512.

    80. [80]

      WEI Q, HUANG C, LU P, ZHANG X, CHEN Y. J. Hazard. Mater., 2023, 441:129960.

    81. [81]

      SONG L C, LI J L, LI H, CHANG Y, DAI S J, XU R M, DOU M H, LI Q J, LV G P, ZHENG T S. Sens. Actuators, B, 2022, 364:131778.

    82. [82]

      JING X, CHANG L, SHI L, LIU X, ZHAO Y, ZHANG W. ACS Appl. Bio Mater., 2020, 3(4):2385-2391.

    83. [83]

      XU K, ZHOU R, TAKEI K, HONG M. Adv. Sci., 2019, 6(16):1900925.

    84. [84]

      ZHAO X, WEN J, ZHANG M, WANG D, WANG Y, CHEN L, ZHANG Y, YANG J, DU Y. ACS Appl. Mater. Interfaces, 2017, 9(8):7710-7716.

    85. [85]

      XIONG J, DONG C, ZHANG J, FANG X, NI J, GAN H, LI J, SONG C. Biosens. Bioelectron., 2022, 213:114442.

    86. [86]

      ZHANG J, SONG C, ZHU Y, GAN H, FANG X, PENG Q, XIONG J, DONG C, HAN C, WANG L. Biosens. Bioelectron., 2023, 219:114836.

    87. [87]

      LI J, WANG W, ZHANG H, LU Z, WU W, SHU M, HAN H. Anal. Chem., 2020, 92(7):4900-4907.

    88. [88]

      WU Z, SUN D W, PU H, WEI Q, LIN X. Food Chem., 2022, 372:131293.

    89. [89]

      WANG H, ZHAO B, YE Y, QI X, ZHANG Y, XIA X, WANG X, ZHOU N. Biosens. Bioelectron., 2022, 207:114164.

    90. [90]

      ROUHBAKHSH Z N, HUANG J W, HO T Y, CHEN C H. TrAC, Trends Anal. Chem., 2022, 157:116820.

    91. [91]

      KHOSHBIN Z, ABNOUS K, TAGHDISI S M, VERDIAN A. Biosens. Bioelectron., 2021, 191:113457.

    92. [92]

      KHOSHBIN Z, ABNOUS K, TAGHDISI S M, VERDIAN A, SAMEIYAN E, RAMEZANI M, ALIBOLANDI M. Food Chem., 2022, 381:132265.

    93. [93]

      VERDIAN A, KHOSHBIN Z, CHEN C H. Biosens. Bioelectron., 2022, 199:113882.

    94. [94]

    95. [95]

      SUN C, LIAO X, JIA B, SHI L, ZHANG D, WANG R, ZHOU L, KONG W. Microchim. Acta, 2020, 187(4):236.

    96. [96]

      HU S, DOU X, ZHANG L, XIE Y, YANG S, YANG M. Toxicon, 2018, 150:144-150.

    97. [97]

      JIANG S, ZHANG L, LI J, OUYANG H, FU Z. Talanta, 2021, 227:122203.

    98. [98]

      LIU X, LIAO X, JIA B, SUN C, ZHOU L, KONG W. Food Chem., 2021, 347:128977.

    99. [99]

    100. [100]

      ZHANG C, DOU X, ZHANG L, SUN M, ZHAO M, OUYANG Z, KONG D, ANTONIO F, YANG M. Toxins, 2018, 10(3):101.

    101. [101]

    102. [102]

      WU H, WANG H, WU J, HAN G, LIU Y, ZOU P. J. Hazard. Mater., 2021, 415:125584.

    103. [103]

    104. [104]

      HUANG X, HUANG T, LI X, HUANG Z. J. Pharm. Biomed. Anal., 2020, 177:112895.

    105. [105]

      ZONG C, JIANG F, WANG X, LI P, XU L, YANG H. Biosens. Bioelectron., 2021, 177:112998.

    106. [106]

  • 加载中
    1. [1]

      Weiliang Wang Zijing Yu Jingyuan Li Hong Shang . The Debate between Traditional Chinese Medicine and Western Medicine. University Chemistry, 2024, 39(9): 109-114. doi: 10.12461/PKU.DXHX202402001

    2. [2]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    3. [3]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    4. [4]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    7. [7]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    8. [8]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    9. [9]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    10. [10]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    11. [11]

      Kejie Li Dongmei Qi . Exploration and Practice of Traditional Chinese Medicine Chemistry Laboratory Management Based on the “Smart Laboratory”. University Chemistry, 2024, 39(10): 353-360. doi: 10.12461/PKU.DXHX202406080

    12. [12]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    13. [13]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    14. [14]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    19. [19]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    20. [20]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

Metrics
  • PDF Downloads(30)
  • Abstract views(1261)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return