Citation: YAN Meng-Hua,  YANG Gao-Xia,  WANG Guang-Li. Enhanced and Homogeneous Cathodic Photoelectrochemical Analysis Based on Surface Passivation Effect[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 276-286. doi: 10.19756/j.issn.0253-3820.221494 shu

Enhanced and Homogeneous Cathodic Photoelectrochemical Analysis Based on Surface Passivation Effect

  • Corresponding author: WANG Guang-Li, glwang@jiangnan.edu.cn
  • Received Date: 6 October 2022
    Revised Date: 1 December 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.22174054).

  • Homogeneous and split-type photoelectrochemical (PEC) sensors based on the enhancement effect of Cd2+ on the photocurrent of lead selenide quantum dots (PbSe QDs) were constructed for sensitive detection of miRNA-21 and carcinoembryonic antigen (CEA). The detection method used the hairpin DNA assembly by T-Hg2+-T base mismatch, whose loops were combined with miRNA-21 or the complementary strand of CEA aptamer to form double strands. Signal amplification was carried out by non-enzymatic DNA strand displacement reaction to release Hg2+ in the hairpin structure, and then the released Hg2+ exchanged ions with cadmium sulfide quantum dots (CdS QDs) to release Cd2+. Then, Cd2+ reacted with PbSe QDs modified electrode to form cadmium selenide (CdSe) layer on its surface, which eliminated the electron-hole recombination center on the surface and improved the charge separation efficiency, realizing enhanced photocurrent output. The experimental results showed that the linear range for detection of miRNA-21 was 5.0×10-16-5.0×10-10 mol/L, and the detection limit was 6.8×10-17 mol/L (S/N = 3). The logarithm of the concentration of CEA was linear with the photocurrent in the range of 5.0×10-2-5.0×104 pg/mL, and the detection limit was 0.007 pg/mL (S/N = 3). The developed PEC biosensors showed good selectivity and could be used for detection of real samples with satisfactory results.
  • 加载中
    1. [1]

      XU Y T, YU S Y, ZHU Y C, FAN G C, HAN D M, QU P, ZHAO W W. TrAC, Trends Anal. Chem., 2019, 114:81-88.

    2. [2]

      ZHAO L, CHEN Y, WU X, LI Z, DONG Y, WANG G L. Anal. Chem., 2021, 93(51):17119-17126.

    3. [3]

      DING X, PENG F, ZHOU J, GONG W, SLAVEN G, LOH K P, LIM C T, LEONG D T. Nat. Commun., 2019, 10:41.

    4. [4]

      KING L A, PARKINSON B A. J. Phys. Chem. Lett., 2016, 7(14):2844-2848.

    5. [5]

      WANG G L, XU J J, CHEN H Y. Nanoscale, 2010, 2(7):1112-1114.

    6. [6]

      WEN G, YANG X, XI X. J. Electroanal. Chem., 2015, 757:192-197.

    7. [7]

      QI L, YANG M, CHANG D, ZHAO W, ZHANG S, DU Y, LI Y. Angew. Chem. Int. Ed., 2021, 60(47):24823-24827.

    8. [8]

      DU Y, DONG S. Anal. Chem., 2017, 89(1):189-215.

    9. [9]

      DU Y, POTHUKUCHY A, GOLLIHAR J D, NOURANI A, LI B, ELLINGTON A D. Angew. Chem. Int. Ed., 2017, 56(4):992-996.

    10. [10]

      MARTINS C S M, LAGROW A P, PRIOR J A V. ACS Sens., 2022, 7(5):1269-1299.

    11. [11]

      CHOI Y E, KWAK J W, PARK J W. Sensors, 2010, 10(1):428-455.

    12. [12]

      KABZA A M, YOUNG B E, SCZEPANSKI J T. J. Am. Chem. Soc., 2017, 139(49):17715-17718.

    13. [13]

      LI F, ZHANG H, WANG Z, LI X, LI X F, LE X C. J. Am. Chem. Soc., 2013, 135(7):2443-2446.

    14. [14]

      TONG H, ZHU Y J, YANG L X, LI L, ZHANG L. Angew. Chem. Int. Ed., 2006, 45(46):7739-7742.

    15. [15]

      CHEN Y, ROSENZWEIG Z. Anal. Chem., 2002, 74(19):5132-5138.

    16. [16]

      DE TRIZIO L, MANNA L. Chem. Rev., 2016, 116(18):10852-10887.

    17. [17]

      GUARDIA P, KOROBCHEVSKAYA K, CASU A, GENOVESE A, MANNA L, COMIN A. ACS Nano, 2013, 7(2):1045-1053.

    18. [18]

      ZHANG Y, DAI Q, LI X, ZOU B, WANG Y, YU W W. J. Nanopart. Res., 2011, 13(9):3721-3729.

    19. [19]

      ZAIATS G, YANOVER D, VAXENBURG R, TILCHIN J, SASHCHIUK A, LIFSHITZ E. Materials, 2014, 7(11):7243-7275.

    20. [20]

      LIU X, ZHANG S Q, CHENG Z H, WEI X, YANG T, YU Y L, CHEN M L, WANG J H. Anal. Chem., 2018, 90(20):12116-12122.

    21. [21]

      LU S, WANG S, ZHAO J, SUN J, YANG X. Anal. Chem., 2017, 89(16):8429-8436.

    22. [22]

      XIA Y, WANG L, LI J, CHEN X, LAN J, YAN A, LEI Y, YANG S, YANG H, CHEN J. Anal. Chem., 2018, 90(15):8969-8976.

    23. [23]

      HUANG C, LIU Y, SUN Y, WANG F, GE S, YU J. ACS Appl. Mater. Interfaces, 2021, 13(30):35389-35396.

    24. [24]

      HUANG C, ZHANG L, ZHU Y, ZHANG Z, LIU Y, LIU C, GE S, YU J. Anal. Chem., 2022, 94(22):8075-8084.

    25. [25]

      SI M L, ZHU S, WU H, LU Z, WU F, MO Y Y. Oncogene, 2007, 26(19):2799-2803.

    26. [26]

      SELCUKLU S D, DONOGHUE M T A, SPILLANE C. Biochem. Soc. Trans., 2009, 37(4):918-925.

    27. [27]

      LIN Z, LV S, ZHANG K, TANG D. J. Mater. Chem. B, 2017, 5(4):826-833.

    28. [28]

      TANG Y, ZHANG B, WANG Y, ZHAO F, ZENG B. ACS Appl. Nano Mater., 2021, 4(7):7264-7271.

    29. [29]

      ZHANG A, HUANG C, SHI H, GUO W, ZHANG X, XIANG H, JIA T, MIAO F, JIA N. Sens. Actuators, B, 2017, 238:24-31.

    30. [30]

      SU S, HAN X, LU Z, LIU W, ZHU D, CHAO J, FAN C, WANG L, SONG S, WENG L, WANG L. ACS Appl. Mater. Interfaces, 2017, 9(14):12773-12781.

    31. [31]

      QIU Z, SHU J, TANG D. Anal. Chem., 2018, 90(20):12214-12220.

  • 加载中
    1. [1]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    2. [2]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    5. [5]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    6. [6]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    7. [7]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    8. [8]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    9. [9]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    10. [10]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    11. [11]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    12. [12]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    13. [13]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    14. [14]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    15. [15]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    16. [16]

      Meng Lin Heng Zhang Shiling Yuan . Exploring a Combined Theory-Practice-Simulation Teaching Model in Physical Chemistry: A Case Study of Surface Tension. University Chemistry, 2025, 40(4): 189-194. doi: 10.12461/PKU.DXHX202407053

    17. [17]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    18. [18]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    19. [19]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    20. [20]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

Metrics
  • PDF Downloads(9)
  • Abstract views(1699)
  • HTML views(165)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return