Citation: ZHANG Di,  ZHANG Hai-Yan,  CHEN Bo-Xin,  ZHU Yu-Chen,  ZHAO Bin,  LI Lei,  ZHENG Dan,  FENG Fei. Micro Gas Chromatographic Column with HKUST-1 as A Stationary Phase[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 429-435. doi: 10.19756/j.issn.0253-3820.221492 shu

Micro Gas Chromatographic Column with HKUST-1 as A Stationary Phase

  • Corresponding author: ZHENG Dan,  FENG Fei, 
  • Received Date: 4 October 2022
    Revised Date: 24 November 2022

    Fund Project: Supported by the National Key R&D Program of China (Nos. 2018YFA0208504, 2021YFC2800301), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA22020504) and the Shanghai Science and Technology Innovation Action Plan, Medical Innovation Research Special Project (No. 22Y11900600).

  • The miniaturization of gas chromatographic columns is beneficial to the miniaturization of gas chromatographic systems. The separation of light alkanes is a challenge for micro gas chromatographic columns (μGCC). Metal organic framework material is a new type of porous material that has been developed rapidly in the last two decades, and has attracted a lot of attention from researchers as stationary phases for gas chromatography. In this study, a μGCC was prepared based on MEMS technology, and a metal organic framework material HKUST-1 was synthesized at room temperature. HKUST-1 was coated into the μGCC as a stationary phase by dynamic coating method. The testing result of the μGCC with HKUST-1 stationary phase showed that the μGCC could completely separate light alkanes mixtures (methane, ethane, propane and n-butane), and the resolution of methane and ethane that were difficult to separate was 9.2.
  • 加载中
    1. [1]

      ZUSHI Y, HASHIMOTO S, TANABE K. Chemosphere, 2016, 156:398-406.

    2. [2]

      GIRI A, COUTRIADE M, RACAUD A, OKUDA K, DANE J, CODY R B, FOCANT J F. Anal. Chem., 2017, 89(10):5395-5403.

    3. [3]

      QIAN Y, WANG Z, TUO J, ZHANG M, WU C, ZHANG T. Pet. Sci. Technol., 2017, 35(2):134-140.

    4. [4]

      ALFEELI B, NARAYANAN S, MOODIE D, ZELLNER P, MCMILLAN M, HIRTENSTEIN D, RICE G, AGAH M. IEEE Sens. J., 2013, 13(11):4312-4319.

    5. [5]

      TERRY S C, JERMAN J H, ANGELL J B. IEEE Trans. Electron Devices, 1979, 26(12):1880-1886.

    6. [6]

      ZHOU M, SHARMA R, ZHU H, LI Z, LI J, WANG S, BISCO E, MASSEY J, PENNINGTON A, SJODING M, DICKSON R P, PARK P, HYZY R, NAPOLITANO L, GILLIES C E, WARD K R, FAN X. Anal. Bioanal. Chem., 2019, 411(24):6435-6447.

    7. [7]

      CHOWDHURY M, GHOLIZADEH A, AGAH M. Fuel, 2021, 286:119387.

    8. [8]

      ALI S, MEHDI A K, TAYLOR L T, AGAH M. Sens. Actuators, B, 2009, 141(1):309-315.

    9. [9]

      SUN J, CUI D, CHEN X, ZHANG L, CAI H, LI H. J. Chromatogr. A, 2013, 1291:122-128.

    10. [10]

      CHEN B, FENG F, ZHAO Y, LIU Q, ZHAO B, LI L, ZHOU H, LI X. J. Chromatogr. A, 2022, 1662:462725.

    11. [11]

      SUN J H, CUI D F, LI Y T, ZHANG L L, CHEN J, LI H, CHEN X. Sens. Actuators, B, 2009, 141(2):431-435.

    12. [12]

      ZAREIAN-JAHROMI M A, AGAH M. J. Microelectromech. Syst., 2010, 19(2):294-304.

    13. [13]

    14. [14]

      ZHANG H, FENG F, ZHAO Y, ZHAO B, LI L, ZHENG D, LI X. J. Chromatogr. A, 2022, 1673:463082.

    15. [15]

      WANG D, SHAKEEL H, LOVETTE J, RICE G W, HEFLIN J R, AGAH M. Anal. Chem., 2013, 85(17):8135-8141.

    16. [16]

      HAUDEBOURG R, MATOUK Z, ZOGHLAMI E, AZZOUZ I, DANAIE K, SASSIAT P, THIEBAUT D, VIAL J. Anal. Bioanal. Chem., 2014, 406(4):1245-1247.

    17. [17]

      STADERMANN M, MCBRADY A D, DICK B, REID V R, NOY A, SYNOVEC R E, BAKAJIN O. Anal. Chem., 2006, 78(16):5639-5644.

    18. [18]

      ZHAO Y Y, CHEN B X, LIU Q Y, LI X X, ZHENG D, FENG F. Proc. -IEEE Micro Electro Mech. Syst., IEEE, New York. 2021:1034-1035.

    19. [19]

      LI H, EDDAOUDI M, O'KEEFFE M, YAGHI O M. Nature, 1999, 402(6759):276-279.

    20. [20]

      FURUKAWA H, CORDOVA K E, O'KEEFFE M, YAGHI O M. Science, 2013, 341(6149):1230444.

    21. [21]

      XUE D X, WANG Q, BAI J. Coord. Chem. Rev., 2019, 378:2-16.

    22. [22]

      MA M, LU L, LI H, XIONG Y, DONG F. Polymers, 2019, 11(11):1823.

    23. [23]

      ZHANG J, CHEN Z. J. Chromatogr. A, 2017, 1530:1-18.

    24. [24]

      KOTOVA A A, THIEBAUT D, VIAL J, TISSOT A, SERRE C. Coord. Chem. Rev., 2022, 455:214364.

    25. [25]

      MENG S S, XU M, HAN T, GU Y H, GU Z Y. Anal. Methods, 2021, 13(11):1318-1331.

    26. [26]

      MAO Y, SHI L, HUANG H, CAO W, LI J, SUN L, JIN X, PENG X. Chem. Commun., 2013, 49(50):5666-5668.

    27. [27]

      AZAD F N, GHAEDI M, DASHTIAN K, HAJATI S, PEZESHKPOUR V. Ultrason. Sonochem., 2016, 31:383-393.

    28. [28]

      ZHAO Z, WANG S, YANG Y, LI X, LI J, LI Z. Chem. Eng. J., 2015, 259:79-89.

    29. [29]

      ROCÍO-BAUTISTA P, MARTÍNEZ-BENITO C, PINO V, PASÁN J, AYALA J H, RUIZ-PÉREZ C, AFONSO A M. Talanta, 2015, 139:13-20.

    30. [30]

      ZHUANG J L, CEGLAREK D, PETHURAJ S, TERFORT A. Adv. Funct. Mater., 2011, 21(8):1442-1447.

    31. [31]

      TIAN B, ZHAO B, FENG F, LUO F, ZHOU H, GE X, YANHONG W, LI X. J. Chromatogr. A, 2018, 1565:130-137.

    32. [32]

      MÜNCH A S, MERTENS F O R L. Microporous Mesoporous Mater., 2018, 270:180-188.

  • 加载中
    1. [1]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    2. [2]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    3. [3]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    4. [4]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    5. [5]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    6. [6]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    7. [7]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    12. [12]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    13. [13]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    14. [14]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    18. [18]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    19. [19]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    20. [20]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

Metrics
  • PDF Downloads(13)
  • Abstract views(895)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return