Citation: XUE Cheng-Feng,  WANG Wen-Ting,  MAO Cui-Ping,  WU Li-Na,  YAN Xiao-Mei. Assessment of Viability and Upper Gastrointestinal Tolerance of Commercial Probiotic Products by Nano-flow Cytometry[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 502-512. doi: 10.19756/j.issn.0253-3820.221468 shu

Assessment of Viability and Upper Gastrointestinal Tolerance of Commercial Probiotic Products by Nano-flow Cytometry

  • Corresponding author: YAN Xiao-Mei, xmyan@xmu.edu.cn
  • Received Date: 22 September 2022
    Revised Date: 23 October 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 21934004, 21627811) and the National Fund for Fostering Talents of Basic Science (No. J1310024).

  • Viable quantity and upper gastrointestinal tolerance are two important indicators of probiotic products, which together determine the number of viable bacteria that can eventually colonize in the human intestine. Accurate assessment of these two indicators is essential for guiding consumers to choose probiotic products and for manufacturers to improve product quality. Based on the unique advantages of the laboratory-developed nano-flow cytometry (nFCM) in the sensitive and rapid analysis of individual bacteria, the viable quantities of probiotic powder and upon digestion with simulated gastric juice (SGJ), simulated intestinal juice (SIJ), and simulated upper gastrointestinal tract were measured in this work. Nucleic acid stains SYTO 9 and propidium iodide (PI) were applied to label all the bacteria or dead bacteria with damaged membrane integrity, respectively. The viable quantity and upper gastrointestinal tolerance of 18 kinds of probiotic products (including 16 kinds of powdered products and 2 kinds of capsules) were evaluated. The viable quantity of these 18 products was higher than 1010 cell/package, with an average viable rate of 61.7%. All products met the International Standard for probiotic products (107 cfu/g), but one was lower than the level stated on the label. Then, SGJ at pH=3 and SIJ with bile salt concentration of 0.3% (m/V) were used to examine the tolerance of probiotic products to gastric juice, intestinal juice and upper gastrointestinal tract. By comparing the survival rate after SGJ and SIJ digestion, the products could be divided into two categories. One had stronger gastric juice resistance (12 products), and the other one had stronger intestinal juice resistance (6 products). For most products, over 108 cells/package of probiotics survived after upper gastrointestinal tract digestion, with an average survival rate of 15.6%. Finally, the protection effect of stomach capsules and enteric capsules on probiotics was investigated. The enteric capsules showed gastric protection to probiotics. However, the encapsulated probiotics needed to have strong intestinal tolerance at the same time to improve their survival rate in the upper gastrointestinal tract.
  • 加载中
    1. [1]

      HILL C, GUARNER F, REID G, GIBSON G R, MERENSTEIN D J, POT B, MORELLI L, CANANI R B, FLINT H J, SALMINEN S, CALDER P C, SANDERS M E. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(8):506-514.

    2. [2]

      HOTEL A. Joint FAO/WHO Expert Consultation, 2001.

    3. [3]

      Fortune Business Insights. 2020, https://www.fortunebusinessinsights.com/industry-reports/probiotics-market-100083.

    4. [4]

      MINELLI E B, BENINI A. Microb. Ecol. Health Dis., 2009, 20(4):180-183.

    5. [5]

      BROECKX G, VANDENHEUVEL D, CLAES I J J, LEBEER S, KIEKENS F. Int. J. Pharm., 2016, 505(1-2):303-318.

    6. [6]

      GONG P, ZHANG L, HAN X, SHIGWEDHA N, SONG W, YI H, DU M, CAO C. Drying Tech., 2014, 32(7):793-800.

    7. [7]

      IACONELLI C, LEMETAIS G, KECHAOU N, CHAIN F, BERMÚDEZ-HUMARÁN L G, LANGELLA P, GERVAIS P, BENEY L. J. Biotechnol., 2015, 214:17-26.

    8. [8]

      CASSANI L, GOMEZ-ZAVAGLIA A, SIMAL-GANDARA J. Food Res. Int., 2020, 129:108852.

    9. [9]

      FUSCO V, FANELLI F, CHIEFFI D. Crit. Rev. Food Sci. Nutr., 2021, 62(25):6854-6871.

    10. [10]

      DIOSO C M, VITAL P, ARELLANO K, PARK H, TODOROV S D, JI Y, HOLZAPFEL W. Foods, 2020, 9(9):1229.

    11. [11]

      WENDEL U. Front. Microbiol., 2022, 12:818468.

    12. [12]

      HUANG Y, ADAMS M C. Int. J. Food Microbiol., 2004, 91(3):253-260.

    13. [13]

      KOLIDA S, GIBSON G R. Annu. Rev. Food Sci. Technol., 2011, 2(1):373-393.

    14. [14]

      ARCHACKA M, BIAŁAS W, DEMBCZYŃSKI R, OLEJNIK A, SIP A, SZYMANOWSKA D, CELIŃSKA E, JANKOWSKI T, OLEJNIK A, ROGODZIŃSKA M. Food Chem., 2019, 274:733-742.

    15. [15]

      ZACARíAS M F, REINHEIMER J A, VINDEROLA G, KULOZIK U, AMBROS S. Int. J. Dairy Technol., 2020, 73(3):625-633.

    16. [16]

      CAILLARD R, LAPOINTE N. Int. J. Pharm., 2017, 519(1-2):125-127.

    17. [17]

      LIU H, CUI S W, CHEN M, LI Y, LIANG R, XU F, ZHONG F. Crit. Rev. Food Sci. Nutr., 2019, 59(17):2863-2878.

    18. [18]

      DAVIS C. J. Microbiol. Methods, 2014, 103:9-17.

    19. [19]

      WILKINSON M G. Trends Food Sci. Tech., 2018, 78:1-10.

    20. [20]

      SIELATYCKA K, JUZWA W, ŚLIWA-DOMINIAK J, KACZMARCZYK M, ŁONIEWSKI I, MARLICZ W. Innov. Food Sci. Emerg. Technol., 2021, 68:102598.

    21. [21]

      BELLALI S, BOU KHALIL J, FONTANINI A, RAOULT D, LAGIER J C. Microbiol. Res., 2020, 236:126454.

    22. [22]

      MARTIN-DEJARDIN F, EBEL B, LEMETAIS G, NGUYEN THI MINH H, GERVAIS P, CACHON R, CHAMBIN O. Eur. J. Pharm. Sci., 2013, 49(2):166-174.

    23. [23]

      ADOUARD N, FUJIMOTO J, OKI K, AKIYAMA T, BELAÏNOUSSI Y, TISON C, MAUFOUX L, BRAZEILLES R, LESIC B, MORIEZ R, OISHI K, LEGRAIN-RASPAUD S. J. Funct. Foods, 2019, 59:30-39.

    24. [24]

      LARSEN N, CAHÚ T B, ISAY SAAD S M, BLENNOW A, JESPERSEN L. Food Microbiol., 2018, 74:11-20.

    25. [25]

      CHEN S, CAO Y, FERGUSON L R, SHU Q, GARG S. Appl. Microbiol. Biotechnol., 2012, 95(2):345-356.

    26. [26]

      MATOUSKOVA P, HOOVA J, RYSAVKA P, MAROVA I. Microorganisms, 2021, 9(8):1625.

    27. [27]

      RODRIGUES V C C, SILVA L G S, SIMABUCO F M, VENEMA K, ANTUNES A E C. J. Funct. Foods, 2019, 55:126-134.

    28. [28]

      AZHAR M A, MUNAIM M S A, HASAN M, WAHID Z A. Int. J. Pharm. Med. Biol. Sci., 2020, 9(3):117-121.

    29. [29]

      ZHU W, LYU F, NAUMOVSKI N, AJLOUNI S, RANADHEERA C S. Beverages, 2020, 6(1):13.

    30. [30]

      LIAN H, HE S, CHEN C, YAN X. Annu. Rev. Anal. Chem., 2019, 12(1):389-409.

    31. [31]

      YANG L, WU L, ZHU S, LONG Y, HANG W, YAN X. Anal. Chem., 2010, 82(3):1109-1116.

    32. [32]

      YANG L, ZHOU Y, ZHU S, HUANG T, WU L, YAN X. Anal. Chem., 2012, 84(3):1526-1532.

    33. [33]

      HE S, HONG X, HUANG T, ZHANG W, ZHOU Y, WU L, YAN X. Methods Appl. Fluoresc., 2017, 5(2):024002.

    34. [34]

      ANNAN N T, BORZA A D, HANSEN L T. Food Res. Int., 2008, 41(2):184-193.

    35. [35]

      VAN DE GUCHTE M, SERROR P, CHERVAUX C, SMOKVINA T, EHRLICH S D, MAGUIN E. Antonie van Leeuwenhoek, 2002, 82(1/4):187-216.

    36. [36]

      FOGLIA C, ALLESINA S, AMORUSO A, DE PRISCO A, PANE M. J. Microbiol. Methods, 2020, 175:105993.

    37. [37]

      AGUILAR-TOALá J E, GARCIA-VARELA R, GARCIA H S, MATA-HARO V, GONZáLEZ-CóRDOVA A F, VALLEJOCORDOBA B, HERNáNDEZ-MENDOZA A. Trends Food Sci. Tech., 2018, 75:105-114.

    38. [38]

      CHIRON C, TOMPKINS T A, BURGUIÈRE P. J. Appl. Microbiol., 2018, 124(2):572-584.

    39. [39]

      GARDNER J D, CIOCIOLA A A, ROBINSON M. J. Appl. Physiol., 2002, 92(2):427-434.

    40. [40]

      LIU W, YE A, HAN F, HAN J. Adv. Colloid Interface Sci., 2019, 263:52-67.

    41. [41]

      GOMAND F, BORGES F, BURGAIN J, GUERIN J, REVOL-JUNELLES A M, GAIANI C. Annu. Rev. Food Sci. Technol., 2019, 10(1):285-310.

  • 加载中
    1. [1]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    4. [4]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    5. [5]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    8. [8]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    11. [11]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    12. [12]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    15. [15]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    16. [16]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    19. [19]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    20. [20]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

Metrics
  • PDF Downloads(11)
  • Abstract views(1561)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return