Citation: LI Xiao-Sen,  HUANG Gui-Lan,  WU Ji-Na,  YANG Yang,  LIU Shi-Lei. Determination of Cyanide in Water and Urine by Solid Phase Extraction-Solid Phase Assisted Derivatization-Gas Chromatography-Tandem Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 611-620. doi: 10.19756/j.issn.0253-3820.221455 shu

Determination of Cyanide in Water and Urine by Solid Phase Extraction-Solid Phase Assisted Derivatization-Gas Chromatography-Tandem Mass Spectrometry

  • Corresponding author: YANG Yang,  LIU Shi-Lei, 
  • Received Date: 15 September 2022
    Revised Date: 13 December 2022

    Fund Project: Supported by the State Key Laboratory of NBC Protection for Civilian (No. SKLNBC 2020-16).

  • A solid phase extraction-solid phase assisted derivatization (SPE-SPAD) method combined with gas chromatography-tandem mass spectrometry analysis was established for qualitative and quantitative detection of trace cyanide in environmental samples and biological samples. The cyanide ion was transformed to cyanogen chloride via chloramine T. Next, the process of enrichment, purification and derivatization for reactants were simultaneously archived on the C8 solid phase extraction (SPE) column. The types of SPE column and the solvent of reaction were optimized for the derivatization. The structure of derivative was identified as n-butyl thiocyanate by gas chromatography-mass spectrometry and nuclear magnetic resonance. The qualitative and quantitative detection method for cyanide in water and urine samples was established by gas chromatography-selective reaction monitoring (SRM) mode via isopropyl disulfide as internal standard. The established method had high sensitivity, good specificity and shorter time of sample preparation. The linear ranges for detection of cyanide in water and urine samples were 10-1000 ng/mL and 10-800 ng/mL, with detection limits of 7.0 and 8.0 ng/mL (S/N=3), respectively. The intra- and inter-day precisions were 4.2%-7.8% (n=3) and 5.2%-7.9% (n=6), respectively. The method was successfully applied to determine the cyanide in urine samples from the 2nd Biological Proficiency Test, which was organized by the Organization for the Prohibition of Chemical Weapons (OPCW), and the average recovery was 97.7%. The wastewater from the Tianjin port after the explosion was detected and the concentration of cyanide was about 1.9 mg/mL. The established method was effective for screening and identification of trace cyanide, and had great potential in chemical accident rescue and chemical weapons verification.
  • 加载中
    1. [1]

      SUN G, PAN J, WU Y, LIU Y, CHEN W, ZHANG Z, SU J. ACS Appl. Mater. Interfaces, 2020, 12(9):10875-10882.

    2. [2]

      ZHONG Y H, XU T, WU X D, LI K M, ZHANG P, JI S Y, LI S M, ZHENG L F, LU B Y. Food Chem., 2021, 354:129405.

    3. [3]

      FRAWLEY K L, CARPENTER TOTONI S, BAE Y, PEARCE L L, PETERSON J. Chem. Res. Toxicol., 2020, 33(2):594-603.

    4. [4]

    5. [5]

      MOHAMMADI A, KIANFAR M. J. Photochem. Photoviol., A, 2018, 367:22-31.

    6. [6]

    7. [7]

      KUDO K, USUMOTO Y, SAMESHIMA N, OKUMURA M, TSUJI A, IKEDA N. Forensic Toxicol., 2018, 36(1):160-169.

    8. [8]

    9. [9]

      KUMAR V, KUMAR V, SINGH A K, VERMA N, BHALLA T C. J. Anal. Chem., 2018, 73(10):1014-1019.

    10. [10]

      LONG L, YUAN X, CAO S, HAN Y, LIU W, CHEN Q, HAN Z, WANG K. ACS Omega, 2019, 4(6):10784-10790.

    11. [11]

      LIU L Z, WANG L, YU M, ZHAO Q, ZHANG Y, SUN Y X, DONG W K. Spectrochim. Acta, Part A, 2019, 222:117209.

    12. [12]

      LI Q, WANG Z, SONG W, MA H, DONG J, QUAN Y Y, YE X, HUANG Z S. Dyes Pigm., 2019, 161:389-395.

    13. [13]

    14. [14]

    15. [15]

    16. [16]

      LIANG M, XIN L, BIN W, GUI J S, ZHENG Q W, MING G. J. J. Chromatogr. B, 2009, 877(29):3645-3651.

    17. [17]

    18. [18]

      WANG F, WANG L, CHEN X, YOON J. Chem. Soc. Rev., 2014, 43(13):4312-4324.

    19. [19]

      WANG L, WEI Z L, CHEN Z Z, LIU C, DONG W K, DING Y J. Microchem. J., 2020, 155:104801.

    20. [20]

      NIU Q F, SUN T, LI T D, GUO Z R, PANG H. Sens. Actuators, B, 2018, 266:730-743.

    21. [21]

      MATIĆ I, GRUJIĆ S, JAUKOVIĆ Z, LAUŠEVIĆ M. J. Chromatogr. A, 2014, 1364:117-127.

    22. [22]

      LIU C C, LIU S L, XI H L, YU H L, ZHOU S K, HUANG G L, LIANG L H, LIU J Q. J. Chromatogr. A, 2017, 1492:41-48.

    23. [23]

      LIU G, LIU J, HARA K, WANG Y, YU Y, GAO L, LI L. J. Chromatogr. B, 2009, 877(27):3054-3058.

    24. [24]

      LONG L, HUANG M, WANG N, WU Y, WANG K, GONG A, ZHANG Z, SESSLER J L. J. Am. Chem. Soc., 2018, 140(5):1870-1875.

    25. [25]

    26. [26]

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    3. [3]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    4. [4]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    5. [5]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    6. [6]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    7. [7]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    10. [10]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    11. [11]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    12. [12]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    13. [13]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    15. [15]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    16. [16]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    17. [17]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    18. [18]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    19. [19]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    20. [20]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

Metrics
  • PDF Downloads(19)
  • Abstract views(905)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return