Citation: ZHAI Tong-Tong,  LI Yun-Hui,  ZHU Jian-Wei,  LI Jing,  WANG Er-Kang. Progress in Electrochemiluminescence of Halide Perovskites Nanocrystals[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 642-651. doi: 10.19756/j.issn.0253-3820.221439 shu

Progress in Electrochemiluminescence of Halide Perovskites Nanocrystals

  • Corresponding author: LI Yun-Hui,  ZHU Jian-Wei,  LI Jing, 
  • Received Date: 1 September 2022
    Revised Date: 30 December 2022

    Fund Project: Supported by the National Key R&D Program of China (Nos. 2019YFA0709202, 2020YFB2009004), the Youth Innovation Promotion Association, CAS (No. 202055) and the Top Talent Plan in Jinan (One Project, One Discussion).

  • Halide perovskites nanocrystals (PeNCs) have attracted much attention in the field of photovoltaics and optoelectronic due to their excellent optical properties such as good conductivity and adjustable band gap. In recent years, many scholars have evaluated the possibility of PeNCs in the field of electrochemiluminescence (ECL) and found that PeNCs produce higher color purity ECL than other classical quantum dots based on annihilation and co-reaction mechanism, but with the poor stability of PeNCs. Researchers have achieved more satisfactory ECL efficiency in organic and aqueous medium with different strategies such as surface engineering, structural modification and interfacial manipulation with PeNCs. In this review, recent advances of PeNCs related ECL, including the ECL mechanisms, methods to improve the stability and ECL efficiency and the applications in ECL were summarized, and the future prospect was also anticipated.
  • 加载中
    1. [1]

      MIAO W. Chem. Rev., 2008, 108(7):2506-2553.

    2. [2]

      YANG M, HUANG J, FAN J, DU J, PU K, PENG X. Chem. Soc. Rev., 2020, 49(19):6800-6815.

    3. [3]

      QI L, YUAN F, XU G. Sci. Sin. Chim., 2018, 48(8):914-925.

    4. [4]

      XU J, HUANG P, QIN Y, JIANG D, CHEN H. Anal. Chem., 2016, 88(9):4609-4612.

    5. [5]

      HERCULES D M. Science, 1964, 145(3634):808-809.

    6. [6]

      WU R, ZHOU K, YUE C Y, WEI J, PAN Y. Prog. Mater. Sci., 2015, 72:1-60.

    7. [7]

      DING Z, QUINN B M, HARAM S K, PELL L E, KORGEL B A, BARD A J. Science, 2002, 296(5571):1293-1297.

    8. [8]

      QUAN L N, GARCÍA DE ARQUER F P, SABATINI R P, SARGENT E H. Adv. Mater., 2018, 30(45):1801996.

    9. [9]

      KOJIMA A, TESHIMA K, SHIRAI Y, MIYASAKA T. J. Am. Chem. Soc., 2009, 131(17):6050-6051.

    10. [10]

      MIN H, LEE D Y, KIM J, KIM G, LEE K S, KIM J, PAIK M J, KIM Y K, KIM K S, KIM M G, SHIN T J, IL SEOK S. Nature, 2021, 598(7881):444-450.

    11. [11]

      BURSCHKA J, PELLET N, MOON S J, HUMPHRY-BAKER R, GAO P, NAZEERUDDIN M K, GRÄTZEL M. Nature, 2013, 499(7458):316-319.

    12. [12]

      ZHOU H, CHEN Q, LI G, LUO S, SONG T, DUAN H S, HONG Z, YOU J, LIU Y, YANG Y. Science, 2014, 345(6196):542-546.

    13. [13]

      HUANG H, SUSHA A S, KERSHAW S V, HUNG T F, ROGACH A L. Adv. Sci., 2015, 2(9):1500194.

    14. [14]

      BHAUMIK S, VELDHUIS S A, NG Y F, LI M, MUDULI S K, SUM T C, DAMODARAN B, MHAISALKAR S, MATHEWS N. Chem. Commun., 2016, 52(44):7118-7121.

    15. [15]

      HUANG Y, FANG M, ZOU G, ZHANG B, WANG H. Nanoscale, 2016, 8(44):18734-18739.

    16. [16]

      LI C H, LU X G, DING W Z, FENG L M, GAO Y H, GUO Z M. Acta Crystallogr., Sect. B:Struct. Sci., Cryst. Eng. Mater., 2008, 64(6):702-707.

    17. [17]

      GREEN M A, HO-BAILLIE A, SNAITH H J. Nat. Photonics, 2014, 8(7):506-514.

    18. [18]

      TANAKA H, OKU T, UEOKA N. Jpn. J. Appl. Phys., 2018, 57(8S3):08RE12.

    19. [19]

      ZHANG X, LIU H, WANG W, ZHANG J, XU B, KAREN K L, ZHENG Y, LIU S, CHEN S, WANG K, SUN X W. Adv. Mater., 2017, 29(18):1606405.

    20. [20]

      PROTESESCU L, YAKUNIN S, BODNARCHUK M I, KRIEG F, CAPUTO R, HENDON C H, YANG R X, WALSH A, KOVALENKO M V. Nano Lett., 2015, 15(6):3692-3696.

    21. [21]

      LI X, WU Y, ZHANG S, CAI B, GU Y, SONG J, ZENG H. Adv. Funct. Mater., 2016, 26(15):2435-2445.

    22. [22]

      LI J, XU L, WANG T, SONG J, CHEN J, XUE J, DONG Y, CAI B, SHAN Q, HAN B, ZENG H. Adv. Mater., 2017, 29(5):1603885.

    23. [23]

      TAN X, ZHANG B, ZOU G. J. Am. Chem. Soc., 2017, 139(25):8772-8776.

    24. [24]

      WUSIMANJIANG Y, YADAV J, ARAU V, STEEN A E, HAMMER N I, PAN S. J. Anal. Test., 2019, 3(2):125-133.

    25. [25]

      CHEN L, KANG Q, LI Z, ZHANG B, ZOU G, SHEN D. New J. Chem., 2020, 44(8):3323-3329.

    26. [26]

      CAO Y, ZHANG Z, LI L, ZHANG J R, ZHU J J. Anal. Chem., 2019, 91(13):8607-8614.

    27. [27]

      JIA J, FU K, HOU S, ZHANG B, FU L, HSU H Y, ZOU G. J. Phys. Chem. C, 2019, 123(49):29916-29921.

    28. [28]

      FU L, FU K, HSU H Y, GAO X, ZOU G. J. Electroanal. Chem., 2020, 876:114546.

    29. [29]

      CAO Y, ZHU W, LI L, ZHANG Z, CHEN Z, LIN Y, ZHU J J. Nanoscale, 2020, 12(13):7321-7329.

    30. [30]

      MALGRAS V, TOMINAKA S, RYAN J W, HENZIE J, TAKEI T, OHARA K, YAMAUCHI Y. J. Am. Chem. Soc., 2016, 138(42):13874-13881.

    31. [31]

      DIRIN D N, PROTESESCU L, TRUMMER D, KOCHETYGOV I V, YAKUNIN S, KRUMEICH F, STADIE N P, KOVALENKO M V. Nano Lett., 2016, 16(9):5866-5874.

    32. [32]

      LEIJTENS T, LAUBER B, EPERON G E, STRANKS S D, SNAITH H J. J. Phys. Chem. Lett., 2014, 5(7):1096-1102.

    33. [33]

      GUARNERA S, ABATE A, ZHANG W, FOSTER J M, RICHARDSON G, PETROZZA A, SNAITH H J. J. Phys. Chem. Lett., 2015, 6(3):432-437.

    34. [34]

      SUN C, ZHANG Y, RUAN C, YIN C, WANG X, WANG Y, YU W W. Adv. Mater., 2016, 28(45):10088-10094.

    35. [35]

      LI G, RIVAROLA F W R, DAVIS N J L K, BAI S, JELLICOE T C, DE LA PEÑA F, HOU S, DUCATI C, GAO F, FRIEND R H, GREENHAM N C, TAN Z K. Adv. Mater., 2016, 28(18):3528-3534.

    36. [36]

      WEI Y, DENG X R, XIE Z X, CAI X C, LIANG S S, MA P A, HOU Z Y, CHENG Z Y, LIN J. Adv. Funct. Mater., 2017, 27(39):170353.

    37. [37]

      WANG Y, HE J, CHEN H, CHEN J, ZHU R, MA P, TOWERS A, LIN Y, GESQUIERE A J, WU S T, DONG Y J. Adv. Mater., 2016, 28(48):10710-10717.

    38. [38]

      TSAI P C, CHEN J Y, ERCAN E, CHUEH C C, TUNG S H, CHEN W C. Small, 2018, 14(22):1704379.

    39. [39]

      DU K, HE L, SONG S, FENG J, LI Y, ZHANG M, LI H, LI C, ZHANG H. Adv. Funct. Mater., 2021, 31(36):2103275.

    40. [40]

      HAO N, LU J, DAI Z, QIAN J, ZHANG J, GUO Y, WANG K. Electrochem. Commun., 2019, 108:106559.

    41. [41]

      FOSDICK S E, BERGLUND S P, MULLINS C B, CROOKS R M. Anal. Chem., 2013, 85(4):2493-2499.

    42. [42]

      LI L, ZHANG Z, CHEN Y, XU Q, ZHANG J, CHEN Z, CHEN Y, ZHU J. Adv. Funct. Mater., 2019, 29(32):1902533.

    43. [43]

      LI Z, KANG Q, CHEN L, ZHANG B, ZOU G, SHEN D. Electrochim. Acta, 2020, 330:135332.

    44. [44]

      CAI Z, LI F, XU W, XIA S, ZENG J, HE S, CHEN X. Nano Res., 2018, 11(3):1447-1455.

    45. [45]

      XUE J, ZHANG Z, ZHENG F, XU Q, XU J, ZOU G, LI L, ZHU J J. Anal. Chem., 2017, 89(16):8212-8216.

    46. [46]

      HUANG Y, LONG X, SHEN D, ZOU G, ZHANG B, WANG H. Inorg. Chem., 2017, 56(17):10135-10138.

    47. [47]

      WANG Y, CHEN T, HUANG C, WANG Y, WU J, SUN B. J. Electroanal. Chem., 2020, 867:114181.

    48. [48]

      WANG X, YU L, KANG Q, CHEN L, JIN Y, ZOU G, SHEN D. Electrochim. Acta, 2020, 360:136992.

    49. [49]

      LIN L, QIU L, LI F, YOU C, ZHU Y, YAO Q, ZENG Y, WANG Y, LI J, CHEN X. ACS Appl. Nano Mater., 2021, 4(9):8823-8833.

    50. [50]

      PAN Q F, JIAO H F, LIU H, YOU J J, SUN A L, ZHANG Z M, SHI X Z. Sci. Total Environ., 2022, 843:156925.

    51. [51]

      ZHANG R R, GAN X T, XU J J, PAN Q F, LIU H, SUN A L, SHI X Z, ZHANG Z M. Food Chem., 2022, 370:131353.

    52. [52]

      WEI J, CHEN L, CAI X, LAI W, CHEN X, CAI Z. Biosens. Bioelectron., 2022, 216:114664.

    53. [53]

      CAO Y, ZHU W, WEI H, MA C, LIN Y, ZHU J J. Anal. Chem., 2020, 92(5):4123-4130.

    54. [54]

      CAO Y, ZHOU Y, LIN Y, ZHU J J. Anal. Chem., 2021, 93(3):1818-1825.

  • 加载中
    1. [1]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    4. [4]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    10. [10]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    11. [11]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    12. [12]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    15. [15]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    16. [16]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    17. [17]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    18. [18]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(12)
  • Abstract views(1255)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return