Citation: JIANG Chun-Feng,  XUE Guang-Hui,  ZHANG Jin-Qiu,  FU Li-Juan,  GAO Ying,  GAO Lu. Study on Antidepressant Mechanism of Chaihuyujinxiang Granules Based on Ultra-High Performance Liquid Chromatography Coupled With Quadrupole Time-of-Flight Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 579-588. doi: 10.19756/j.issn.0253-3820.221413 shu

Study on Antidepressant Mechanism of Chaihuyujinxiang Granules Based on Ultra-High Performance Liquid Chromatography Coupled With Quadrupole Time-of-Flight Mass Spectrometry

  • Corresponding author: GAO Ying,  GAO Lu, 
  • Received Date: 12 August 2022
    Revised Date: 2 December 2022

    Fund Project: Supported by the Jilin Provincial Science and Technology Development Program (No.20210204061YY).

  • The treatment mechanism of depression of model mice induced by chronic unpredictable mild stress (CUMS) using Chaihuyujinxiang granules (CHYJX) was investigated by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), which laid a theoretical foundation for the clinical treatment of depression using CHYJX. A total of 1266 endogenous metabolites were identified in mouse plasma. Based on univariate statistical analysis, there were significant differences in metabolites between the blank group and the model group, and between the model group and the CHYJX treatment group. The results of principal component analysis (PCA) of multidimensional statistical analysis showed that there was a clear trend of difference between the blank group, the model group and the CHYJX treatment group. The orthogonal partial least squares discriminant analysis method (OPLS-DA) could clearly distinguish the blank group and the model group, and the model group and the CHYJX treatment group, and 57 and 89 differential metabolites were screened out, respectively, of which 13 differential metabolites had opposite trends in the two contrast modes. The pathway enrichment analysis of these 13 differential metabolites showed that GABAergic synapses, neural active ligand receptor interactions, synaptic vesicle circulation, 5-hydroxytryptaminergic and dopaminergic synapses, sphingolipid metabolism, phenylalanine and tyrosine, tryptophan biosynthesis, and phenylalanine metabolic pathway had significant changes. The pathogenesis of depression was closely related to neural activity. The results of this study indicated that the mechanism of CHYJX in the treatment of CUMS and solitary-induced depression model mice was closely related to these eight signaling pathways.
  • 加载中
    1. [1]

      ABDEL-BAKKY M, AMIN E, FARIS T, ABDELLATIF A. Mol. Med. Rep., 2021, 24(6):839.

    2. [2]

      DUDEK K A, DION-ALBERT L, KAUFMANN F N, TUCK E, LEBEL M, MENARD C. Eur. J. Neurosci., 2021, 53(1):183-221.

    3. [3]

      WANG C, LIN H, YANG N, WANG H, ZHAO Y, LI P, LIU J, WANG F. Molecules, 2019, 24(9):1712.

    4. [4]

    5. [5]

      MARCHEV A S, VASILEVA L V, AMIROVA K M, SAVOVA M S, BALCHEVA-SIVENOVA Z P, GEORGIEV M I. Cell. Mol. Life Sci., 2021, 78(19-20):6487-6503.

    6. [6]

      DAI W, FENG K, SUN X, XU L, WU S, RAHMAND K, JIA D, HAN T. J. Ethnopharmacol., 2022, 285:114692.

    7. [7]

    8. [8]

      XIAO Z, CAO Z, YANG J, JIA Z, DU Y, SUN G, LU Y, PEI L. Biochem. Pharmacol., 2021, 190:114594.

    9. [9]

      CHEN H, MA Y, CHEN M, CHEN J, CHEN J. Ann. Palliat. Med., 2021, 10(7):8015-8023.

    10. [10]

      GUAN Y, WANG J, WU X, SONG L, WANG Y, GONG M, LI B. Brain Res., 2021, 1772:147661.

    11. [11]

      LI L F, LU J, LI X M, XU C L, YANG J, QU R, MA S P. Fitoterapia, 2012, 83(1):93-103.

    12. [12]

      ZHANG H, XUE X, PAN J, SONG X, CHANG X, MAO Q, LU Y, ZHAO H, WANG Y, CHI X, WANG S, MA K. Chin. Med., 2021, 16(1):107.

    13. [13]

      CHAPMAN C A, NUWER J L, JACOB T C. Front. Synaptic Neurosci., 2022, 14:911020.

    14. [14]

      WEI J, LIU J, LIANG S, SUN M, DUAN J. Int. J. Nanomed., 2020, 15:4407-4415.

    15. [15]

      YOO H, KIM H J, YANG S H, SON G H, GIM J A, LEE H W, KIM H. Mol. Cells, 2022, 45(5):306-316.

    16. [16]

      AYUB M, JIN H K, BAE J. Int. J. Mol. Sci., 2021, 22(14):7353.

    17. [17]

      MUHLE C, WAGNER C J, FARBER K, RICHTER-SCHMIDINGER T, GULBINS E, LENZ B, KORNHUBER J. J. Clin. Med., 2019, 8(6):846.

    18. [18]

      JADDOA E, MASANIA J, MASIERO E, SGAMMA T, ARROO R, SILLENCE D, ZETTERSTRÖM T. J. Psychopharmacol., 2020, 34(7):716-725.

    19. [19]

      BLIER P. J. Clin. Psychiatry, 2016, 77(3):e319.

    20. [20]

      SHARMA A, CASTELLANI R J, SMITH M A, MURESANU D F, DEY P K, SHARMA H S. Int. Rev. Neurobiol., 2019, 146:1-44.

    21. [21]

      ENNIS M A, RASMUSSEN B F, LIM K, BALL R O, PENCHARZ P B, COURTNEY-MARTIN G, ELANGO R. Am. J. Clin. Nutr., 2020, 111(2):351-359.

    22. [22]

      ZHAO S, KHOO S, NG S C, CHI A. Int. J. Environ. Res. Public Health, 2022, 19(6):3321.

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    3. [3]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    4. [4]

      Yan Su Xiuyun Wang Huimin Guo Yanjuan Zhang Xinwen Zhang Yunting Shang Wenfeng Jiang . To Cultivate Scientific Literacy by Learning, Thinking, Practicing and Understanding, To Utilize the “Smart Eye” Expertise by Integrating of Knowledge and Action: Ideological and Political Construction of Analytical Chemistry Experiment Course. University Chemistry, 2024, 39(2): 196-202. doi: 10.3866/PKU.DXHX202308003

    5. [5]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    6. [6]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    7. [7]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    8. [8]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    9. [9]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    10. [10]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    11. [11]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    12. [12]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    13. [13]

      Jiantao Zai Hongjin Chen Xiao Wei Li Zhang Li Ma Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023

    14. [14]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    15. [15]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    16. [16]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    17. [17]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

    18. [18]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    19. [19]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    20. [20]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

Metrics
  • PDF Downloads(6)
  • Abstract views(634)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return