Citation: FANG Tai,  WANG Qi-Wei,  DU Yi,  SHI Li-Li,  LI Tao. DNA Logic Circuit based on pH-Sensitive DNA Quadruplex Fluorescent Ligand for H2O2 Detection[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 901-910. doi: 10.19756/j.issn.0253-3820.221401 shu

DNA Logic Circuit based on pH-Sensitive DNA Quadruplex Fluorescent Ligand for H2O2 Detection

  • Corresponding author: LI Tao, tlitao@ustc.edu.cn
  • Received Date: 4 August 2022
    Revised Date: 25 October 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 21904122, 22074133, 21874124) and the Anhui Provincial Natural Science Foundation (No. 2008085MB42).

  • Cancer is one of the main threats to human health. Due to the abnormal proliferation of cancer cells, the surface microenvironment of cancer cells is in a weakly acidic state (~pH 6.5), and the concentrations of K+ and hydrogen peroxide (H2O2) are also significantly higher than normal levels. These environmental characteristics are of great significance in specific diagnosis and treatment of cancer. In view of the above environmental factors, an acid-responsive G-quadruplex (G4) fluorescent ligand (PSNB) that was fluorescently lit under acidic conditions (~pKa 5.2) was synthesized, and its pKa increased to 7.0 after binding to G4, which could work normally in acidic microenvironment of cancer cells. The designed probe could undergo addition reaction with HSO3-, resulting in quenching of the fluorescence, and the fluorescence was restored after H2O2 oxidation. Based on this, a K+ and H+ logically controlled H2O2 sensing platform using PSNB and G4 was constructed. Under the optimal conditions, fluorescence recovery intensity showed a good linear relationship with concentration of H2O2 in the range of 1-1000 μmol/L with a detection limit of 1 μmol/L, exhibiting a high selectivity to H2O2. The concentration of intracellular H2O2 in MCF-7 cell lysate was measured to be about 331 μmol/L, which was consistent with the concentration range previously reported (0.1-1 mmol/L).
  • 加载中
    1. [1]

      HOEHNE M N, JACOBS L J H C, LAPACZ K J, CALABRESE G, MURSCHALL L M, MARKER T, KAUL H, TRIFUNOVIC A, MORGAN B, FRICKER M, BELOUSOV V V, RIEMER J. EMBO J., 2022, 41(7):e109169.

    2. [2]

      YAO Y, ZHANG H, WANG Z, DING J, WANG S, HUANG B, KE S, GAO C. J. Mater. Chem. B, 2019, 7(33):5019-5037.

    3. [3]

      ZHANG D, WEI W, LIU Y, PU Y, LIU S. Anal. Chem., 2021, 93(48):16248-16256.

    4. [4]

      TIAN H, ZHANG M, JIN G, JIANG Y, LUAN Y. J. Colloid Interface Sci., 2021, 587:358-366.

    5. [5]

      LIN B, CHEN H, LIANG D, LIN W, QI X, LIU H, DENG X. ACS Appl. Mater. Interfaces, 2019, 11(12):11157-11166.

    6. [6]

      DOSKEY C M, BURANASUDJA V, WAGNER B A, WILKES J G, DU J, CULLEN J J, BUETTNER G R. Redox Biol., 2016, 10:274-284.

    7. [7]

      LUO Y, LIU H, RUI Q, TIAN Y. Anal. Chem., 2009, 81(8):3035-3041.

    8. [8]

      PENG P, WANG Q, DU Y, WANG H, SHI L, LI T. Anal. Chem., 2020, 92(13):9273-9280.

    9. [9]

      RONG L, ZHANG C, LEI Q, HU M M, FENG J, SHU H B, LIU Y, ZHANG X Z. Regener. Biomater., 2016, 3(4):217-222.

    10. [10]

      REJA S I, GUPTA M, GUPTA N, BHALLA V, OHRI P, KAUR G, KUMAR M. Chem. Commun., 2017, 53(26):3701- 3704.

    11. [11]

      KAUR M, YANG D S, CHOI K, CHO M J, CHOI D H. Dyes Pigm., 2014, 100:118-126.

    12. [12]

      LEE J, YOON S A, CHUN J, KANG C, LEE M H. Anal. Chim. Acta, 2019, 1080:153-161.

    13. [13]

      HUANG Y, YU L, LU P, WEI Y, FU L, HOU J, WANG Y, WANG X, CHEN L. J. Hazard. Mater., 2022, 424:127425.

    14. [14]

      ZHANG X, CHEN Y, HE H, WANG S, LEI Z, ZHANG F. Angew. Chem. Int. Ed., 2021, 60(50):26337-26341.

    15. [15]

      XUAN T F, WANG Z Q, LIU J, YU H T, LIN Q W, CHEN W M, LIN J. J. Med. Chem., 2021, 64(15):11074-11089.

    16. [16]

      WANG Q, FANG T, ZHENG J, SHI L, SHI L, LI T. ACS Appl. Mater. Interfaces, 2021, 13(8):9359-9368.

    17. [17]

      FENG G, LUO X, LU X, XIE S, DENG L, KANG W, HE F, ZHANG J, LEI C, LIN B, HUANG Y, NIE Z, YAO S. Angew. Chem. Int. Ed., 2019, 58(20):6590-6594.

    18. [18]

      KANG Y, WEI C. Spectrochim. Acta, Part A, 2022, 267:120518.

    19. [19]

      LI J, YIN X, LI B, LI X, PAN Y, LI J, GUO Y. Anal. Chem., 2019, 91(8):5354-5361.

    20. [20]

      ZHANG Y, GUAN L, YU H, YAN Y, DU L, LIU Y, SUN M, HUANG D, WANG S. Anal. Chem., 2016, 88(8):4426-4431.

    21. [21]

      RAO P G, SARITHA B, RAO T S. J. Photochem. Photobiol., A, 2019, 372:177-185.

    22. [22]

      WIMBERGER L, PRASAD S K K, PEEKS M D, ANDRÉASSON J, SCHMIDT T W, BEVES J E. J. Am. Chem. Soc., 2021, 143(49):20758-20768.

    23. [23]

      GAO P, WANG J, ZHENG M, XIE Z. Chem. Eng. J., 2020, 381:122665.

    24. [24]

      HOU J T, REN W X, LI K, SEO J, SHARMA A, YU X Q, KIM J S. Chem. Soc. Rev., 2017, 46(8):2076-2090.

    25. [25]

      SHI L, PENG P, ZHENG J, WANG Q, TIAN Z, WANG H, LI T. Nucleic Acids Res., 2020, 48(4):1681-1690.

    26. [26]

      LUO X, XUE B, FENG G, ZHANG J, LIN B, ZENG P, LI H, YI H, ZHANG X L, ZHU H, NIE Z. J. Am. Chem. Soc., 2019, 141(13):5182-5191.

    27. [27]

      ZHANG W, LIU T, HUO F, NING P, MENG X, YIN C. Anal. Chem., 2017, 89(15):8079-8083.

    28. [28]

      SU J, ZHANG S, WANG C, LI M, WANG J, SU F, WANG Z. ACS Omega, 2021, 6(23):14819-14823.

    29. [29]

      HICKS J M, SILMAN N J, JACKSON S K, AYLOTT J W, RAWSON F J. Bioelectrochemistry, 2020, 135:107547.

    30. [30]

      KIM J, CHO H R, JEON H, KIM D, SONG C, LEE N, CHOI S H, HYEON T. J. Am. Chem. Soc., 2017, 139(32):10992-10995.

    31. [31]

      DONG Z, YANG Z, HAO Y, FENG L. Nanoscale, 2019, 11(35):16164-16186.

  • 加载中
    1. [1]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    2. [2]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    3. [3]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    4. [4]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    5. [5]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    6. [6]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    7. [7]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    8. [8]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    9. [9]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    10. [10]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    11. [11]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    12. [12]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    13. [13]

      Yanyan ZhaoZhen WuYong ZhangBicheng ZhuJianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142

    14. [14]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    16. [16]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    17. [17]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    18. [18]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    20. [20]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

Metrics
  • PDF Downloads(14)
  • Abstract views(2659)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return