Citation: LIU Yu-Long,  SHAO Zhi-Guo,  ZHANG Xiao-Fei,  LIU Guang-Quan. Determination of Volatile Organic Compounds in Complex Matrix Waters by Headspace-Gas Chromatography-Quadrupole/Orbitrap High Resolution Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 589-599. doi: 10.19756/j.issn.0253-3820.221387 shu

Determination of Volatile Organic Compounds in Complex Matrix Waters by Headspace-Gas Chromatography-Quadrupole/Orbitrap High Resolution Mass Spectrometry

  • Corresponding author: LIU Yu-Long, liuyulong98@cnpc.com.cn
  • Received Date: 29 July 2022
    Revised Date: 10 December 2022

    Fund Project: Supported by the Scientific Research and Technology Development Project of China National Petroleum Corporation (No. 2021DJ6605).

  • A headspace-gas chromatography-quadrupole/orbitrap high resolution mass spectrometry (HS-GC-Q/OrbitrapHRMS) for determination of 56 kinds of volatile organic compounds (VOCs) in complex matrix waters was developed. By optimizing the conditions of injection delay time of headspace injector and inlet temperature of gas chromatograph, the sample condensation of high-boiling analytes inside the syringe's needle was eliminated. A TG-5SILMS chromatographic column was used for separation, the data were collected by electron ionization (EI) sources under the full scan mode, and the analytes were quantified by using dichloromethane-D2 and fluorobenzene as internal standards. In a 10-mL test sample, sodium chloride (NaCl) concentration was 30% (m/V) and methanol concentration should be below 3% (V/V). The calibration curves of 56 compounds showed good linearity in the concentration ranges of 0.2-10 μg/L (R2>0.998) and 10-200 μg/L (R2>0.995). The recoveries ranged from 83.5% to 129.0% at three spiked levels (2, 10 and 100 μg/L), while the relative standard deviations (RSD) ranged from 0.4% to 13.0%. The limits of detection and limits of quantification were 0.01-0.17 μg/L and 0.05-0.69 μg/L, respectively. In the 99% confidence interval, the measurements of reference material (RM) of VOCs in groundwater with high bicarbonate and natural organic matter showed that there was no significant difference among the results of this method and those of the RM's property values. The detection method with high sensitivity and precision was superior to the current detection methods, and suitable for determining VOCs in water samples which could not introduce to GC-MS system by P&T samplers.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      US EPA. Method 8260d. Volatile Organic Compounds by Chromatography/Mass Spectrometry. Revision 4, 2018.

    4. [4]

    5. [5]

      US EPA. Method 524.4. Measurement of Purgeable Organic Compounds in Water by Gas Chromatography/Mass Spectrometry Using Nitrogen Purge Gas, 2013.

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

    14. [14]

      STEIN S E. NIST/EPA/NIH Mass Spectral Library (NIST 14) and NIST Mass Spectral Search Program (Version 2.2) User's Guide. National Institute of Standards and Technology, 2014.[2022-11-24]. https://chemdata.nist.gov/dokuwiki/lib/exe/fetch.php?media=chemdata:downloads:nist_ms_search_v22_pdf.zip.

    15. [15]

      MAKAROV A, DENISOV E, KHOLOMEEV A, BALSCHUN W, LANGE O, STRUPAT K, HORNING S. Anal. Chem., 2006, 78(7):2113-2120.

    16. [16]

      PETERSON A C, HAUSCHILD J P, QUARMBY S T, KRUMWIEDE D, LANGE O, LEMKE R A S, GROSSECOOSMANN F, HORNING S, DONOHUE T J, WESTPHALL M S, COON J J, GRIEP-RAMING J. Anal. Chem., 2014, 86(20):10036-10043.

    17. [17]

    18. [18]

      MOL H G J, TIENSTRA M, ZOMER P. Anal. Chim. Acta, 2016, 935:161-172.

    19. [19]

      GÓMEZ-RAMOS M M, UCLES S, FERRER C, FERNÁNDEZ-ALBA A R, HERNANDO M D. Sci. Total Environ., 2019, 647:232-244.

    20. [20]

      AYALA-CABRERA J F, ÁBALOS M, ABAD E, MOYANO E, SANTOS F J. Anal. Bioanal. Chem., 2020, 412(15):3703-3716.

    21. [21]

    22. [22]

      DOMÍNGUEZ I, ARREBOLA F J, MARTÍNEZ VIDAL J L, GARRIDO FRENICH A. J. Chromatogr. A, 2020, 1619:460964.

    23. [23]

      POSTIGO C, COJOCARIU C I, RICHARDSON S D, SILCOCK P J, BARCELO D. Anal. Bioanal. Chem., 2016, 408(13):3401-3411.

    24. [24]

      YANG L, WANG S, PENG X, ZHENG M, YANG Y, XIAO K, LIU G. Sci. Total Environ., 2019, 664:107-115.

    25. [25]

      JAVELLE T, RIGHEZZA M, DANGER G. J. Chromatogr. A, 2021, 1652:462343.

    26. [26]

      DING L, WANG L, NIAN L, TANG M, YUAN R, SHI A, SHI M, HAN Y, LIU M, ZHANG Y, XU Y. Sci. Total Environ., 2022, 835:155277.

    27. [27]

      LI H, LIU Y, WANG Z, ZHANG Q, XING J, BAI H, LV Q. Talanta, 2022, 242:123285.

    28. [28]

      KRÄTSCHMER K, COJOCARIU C, SCHÄCHTELE A, MALISCH R, VETTER W. J. Chromatogr. A, 2018, 1539:53-61.

    29. [29]

      KONDYLI A, SCHRADER W. J. Mass Spectrom., 2019, 54(1):47-54.

    30. [30]

    31. [31]

      ROOD D. The Troubleshooting and Maintenance Guide for Gas Chromatographers. 4th ed. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2007:91-93.

    32. [32]

      KOIB B, ETTRE L S. Static Headspace-Gas Chromatography:Theory and Practice. 2nd Ed. Hoboken, New Jersey:John Wiley & Sons, Inc., 2006:70-72, 187-189.

    33. [33]

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    5. [5]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    6. [6]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    14. [14]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    15. [15]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    16. [16]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    17. [17]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    18. [18]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    19. [19]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(5)
  • Abstract views(924)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return