Citation: ZHAO Guan-Fang,  CAI Ming-Jun,  LI Hong-Ru,  ZOU Tian-Yi,  GAO Jing,  XU Hai-Jiao,  WANG Hong-Da. Mechanism Study of Glucose Regulation of Syntaxin 1A on INS-1 Cell Membranes by Direct Stochastic Optical Reconstruction Microscopy[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(1): 63-71. doi: 10.19756/j.issn.0253-3820.221378 shu

Mechanism Study of Glucose Regulation of Syntaxin 1A on INS-1 Cell Membranes by Direct Stochastic Optical Reconstruction Microscopy

  • Corresponding author: XU Hai-Jiao,  WANG Hong-Da, 
  • Received Date: 26 July 2022
    Revised Date: 17 August 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21727816, 21721003, 22150003) and the Scientific Instrument Developing Project of Chinese Academy of Sciences (No.ZDKYYQ20220005).

  • The level and rate of insulin secretion are regulated by glucose concentration. Syntaxin 1A (STX-1A) is a core component of soluble N-ethylmaleimide-sensitive factor attachment proteins receptor (SNARE) complex and is essential for mediating the docking and fusion of insulin granules with cell membranes during insulin secretion. However, the mechanism of whether and how glucose regulates STX-1A to affect insulin release is still not well elucidated. To address this issue, the regulatory effect of glucose on STX-1A on INS-1 cell membranes was investigated by direct stochastic optical reconstruction microscopy (dSTORM). It was found that the elevated glucose concentration increased the expression of STX-1A on the cell membrane, and the density and aggregation of STX-1A protein clusters on the cell membrane were also increased. However, the glucotoxicity caused by chronic stimulation with high glucose concentration severely reduced the expression of STX-1A protein on the cell membrane, while the density and aggregation of STX-1A protein clusters on the cell membrane were also significantly reduced. By linking the expression and spatial distribution characteristics of STX-1A on cell membranes to insulin-secreting cell functions, the role of glucose in regulating the functional organization of STX-1A at the molecular level was revealed, which provided new insights into the mechanisms by which SNAREs regulate insulin release.
  • 加载中
    1. [1]

      PRATLEY R E, WEYER C. Diabetologia, 2001, 44(8):929-945.

    2. [2]

      KHAN A, PESSIN J. Diabetologia, 2002, 45(11):1475-1483.

    3. [3]

      LUO X, WU J, JING S, YAN L. J. Aging Dis, 2016, 7(1):90-110.

    4. [4]

      OLSON L K, REDMON J B, TOWLE H C, ROBERTSON R P. J. Clin. Invest., 1993, 92(1):514-519.

    5. [5]

      PARK K G, LEE K M, SEO H Y, SUH J H, KIM H S, WANG L, WON K C, LEE H W, PARK J Y, LEE K U, KIM J G, KIM B W, CHOI H S, LEE I K. Diabetes, 2007, 56(2):431-437.

    6. [6]

      YANG G Y, LI L J, LIU Y M, LIANG K, WEI L S, CHEN L Y. Front. Cell Dev. Biol., 2021, 9:650167.

    7. [7]

      LANG J. EJBio, 1999, 259(1-2):3-17.

    8. [8]

      GAUTHIER B R, WOLLHEIM C B. Am. J. Physiol.:Endocrinol. Metab., 2008, 295(6):E1279-E1286.

    9. [9]

      GAISANO H Y. Diabetes, Obes. Metab., 2017, 19(S1):115-123.

    10. [10]

      NOMIYAMA R, EMOTO M, FUKUDA N, MATSUI K, KONDO M, SAKANE A, SASAKI T, TANIZAWA Y. J. Diabetes Invest., 2019, 10(3):591-601.

    11. [11]

      AMOS C, KIESSLING V, SCHENK N, MOHAN R, DOYLE C A., KREUTZBERGER A J B, WANG H Y, LEVENTAL K R, LEVENTAL I, ANANTHARAM A, TAMM L K. Biomed. Pharmacol. J., 2022, 121(3):292a-293a.

    12. [12]

      LAM P P L, LEUNG Y M, SHEU L, ELLIS J, TSUSHIMA R G, OSBORNE L R, GAISANO H Y. Diabetes, 2005, 54(9):2744-2754.

    13. [13]

      KOFUJI T, FUJIWARA T, SANADA M, MISHIMA T, AKAGAWA K. J. Neurosci., 2014, 130(4):514-525.

    14. [14]

      FUKUDA R, MCNEW J A, WEBER T, PARLATI F, ENGEL T, NICKEL W, ROTHMAN J E, SÖLLNER T H. Nature, 2000, 407(6801):198-202.

    15. [15]

      HONG W J, LEV S. Trends Cell Biol., 2014, 24(1):35-43.

    16. [16]

      PFEFFER S R. Annu. Rev. Cell Dev. Biol., 1996, 12(1):441-461.

    17. [17]

      XIONG Q Y, YU C, ZHANG Y, LING L F, WANG L Z, GAO J L. Biomed. Rep., 2017, 6(2):134-139.

    18. [18]

      JAHN R, SCHELLER R H. Nat. Rev. Mol. Cell Biol., 2006, 7(9):631-643.

    19. [19]

      LIU W, PARPURA V. Sci. World J., 2010, 10:1258-1268.

    20. [20]

      YOON T Y, MUNSON M. Curr. Biol., 2018, 28(8):R397-R401.

    21. [21]

      SOLIMENA M, SPEIER S. Cell Metab., 2010, 12(1):5-6.

    22. [22]

      NAGAMATSU S, NAKAMICHI Y, YAMAMURA C, MATSUSHIMA S, WATANABE T, OZAWA S, FURUKAWA H, ISHIDA H. Diabetes, 1999, 48(12):2367-2373.

    23. [23]

      OSTENSON C G, GAISANO H, SHEU L, TIBELL A, BARTFAI T. Diabetes, 2006, 55(2):435-440.

    24. [24]

      TORREJÓN-ESCRIBANO B, ESCORIZA J, MONTANYA E, BLASI J. Endocrinology, 2011, 152(4):1290-1299

    25. [25]

      KLEIN T, PROPPERT S, SAUER M. Histochem. Cell Biol., 2014, 141(6):561-575

    26. [26]

      LELEK M, GYPARAKI M T, BELIU G, SCHUEDER F, GRIFFIÉ J, MANLEY S, JUNGMANN R, SAUER M, LAKADAMYALI M, ZIMMER C. Nat. Rev. Methods Primers, 2021, 1(1):39.

    27. [27]

      JENSEN E, CROSSMAN D J. Anat. Rec., 2014, 297(12):2227-2231.

    28. [28]

      YAN Q Y, LU Y T, ZHOU L L, CHEN J L, XU H J, CAI M J, SHI Y, JIANG J G, XIONG W Y, GAO J, WANG H D. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(27):7033-7038.

    29. [29]

      FU Y L, JING Y Y, GAO J, LI Z H, WANG H D, CAI M J, TONG T. Talanta, 2020, 207:120312.

    30. [30]

      OVESNY M, KŘÍŽEK P, BORKOVEC J, ŠVINDRYCH Z, HAGEN G M. Bioinformatics, 2014, 30(16):2389-2390

    31. [31]

      OWEN D M, RENTERO C, ROSSY J, MAGENAU A, WILLIAMSON D, RODRIGUEZ M, GAUS K. J. Biophotonics, 2010, 3(7):446-454.

    32. [32]

      LEVET F, HOSY E, KECHKAR A, BUTLER C, BEGHIN A, CHOQUET D, SIBARITA J B. Nat. Methods, 2015, 12(11):1065-1071.

    33. [33]

      VAN DE LINDE S. J. Phys. D:Appl. Phys., 2019, 52(20):203002.

    34. [34]

      KOMATSU M, TAKEI M, ISHII H, SATO Y. J. Diabetes Invest., 2013, 4(6):511-516.

    35. [35]

    36. [36]

      KAISER N, LEIBOWITZ G, NESHER R. J. Pediatr. Endocrinol. Metab., 2003, 16(1):5-22.

    37. [37]

      BENSELLAM M, LAYBUTT D R, JONAS J C. Mol. Cell. Endocrinol., 2012, 364(1):1-27.

    38. [38]

      DUBOIS M, VACHER P, ROGER B, HUYGHE D, VANDEWALLE B, KERR-CONTE J, PATTOU F, MOUSTAIÏD-MOUSSA N, LANG J. Endocrinology, 2007, 148(4):1605-1614.

  • 加载中
    1. [1]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    2. [2]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    3. [3]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    4. [4]

      Shui Hu Houjin Li Zhenming Zang Lianyun Li Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063

    5. [5]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    8. [8]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    9. [9]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    12. [12]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    13. [13]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    16. [16]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    17. [17]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    18. [18]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    19. [19]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    20. [20]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

Metrics
  • PDF Downloads(8)
  • Abstract views(766)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return