Citation: LIU Ya,  CHEN Jia-Wei,  ZHAN Fa-Wang,  ZHANG Bo. Advance in Packed Column Technologies for Nanoflow Liquid Chromatography[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(1): 1-10. doi: 10.19756/j.issn.0253-3820.221345 shu

Advance in Packed Column Technologies for Nanoflow Liquid Chromatography

  • Corresponding author: ZHAN Fa-Wang,  ZHANG Bo, 
  • Received Date: 12 July 2022
    Revised Date: 28 August 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21475110, J1310024) and the Xiamen Marine and Fishery Development Foundation Project (No.19CZB001HJ03).

  • As an important format of the miniaturization of high performance liquid chromatography, nanoflow liquid chromatography has been widely used in the fields of life science, biomedicine and microscale analysis, etc, due to its unique advantages such as less consumption of solvent, less demand of sample amount, higher sensitivity and better compatibility with mass spectrometer. As the core of nanoflow liquid chromatography, packed columns are the most commonly used column type, which are prepared by packing spherical chromatographic materials in the capillary tube. Since column is the place where the separation actually takes place, it plays an important role in the resolution and selectivity of chromatographic separations. Therefore, preparation of high resolution microcolumns is of great importance in securing high performance nano-LC separations. There are two key technologies in preparation of nano-LC columns: fritting and packing. In recent years, with the continuous development of fritting and packing technologies, the stability and separation performance of packed nanoflow liquid chromatographic columns have been significantly improved. This review summarized the developments in fritting and packing technologies involved in nanoflow liquid chromatographic columns in the past ten years, and discussed the recent applications in the field of omics research and biopharmaceuticals, as well as its prospects for future developments.
  • 加载中
    1. [1]

      HORVATH C G, PREISS B A, LIPSKY S R. Anal. Chem., 1967, 39(12):1422-1428.

    2. [2]

      TAKEUCHI T, ISHII D. J. Chromatogr., 1982, 238(2):409-418.

    3. [3]

      TSUDA T, NOVOTNY M. Anal. Chem., 1978, 50(2):271-275.

    4. [4]

      KARLSSON K E, NOVOTNY M. Anal. Chem., 1988, 60(17):1662-1665.

    5. [5]

      GAUTAM S, BANAZADEH A, CHO B G, GOLI M, ZHONG J Q, MECHREF Y. Anal. Chem., 2021, 93(12):5061-5070.

    6. [6]

      GHANEM A, MARZOUK A A, ELADL S M, FOUAD A. J. Chromatogr. A, 2022, 1662:462714.

    7. [7]

      MA M X, ZHANG J, ZHANG X C, KAN Z G, DU Y X. Electrophoresis, 2022, 43(13-14):1415-1422.

    8. [8]

      ROBERG L H, WILSON S R, LUNDANES E. TrAC, Trends Anal. Chem., 2021, 136:116190.

    9. [9]

      FANALI S. J. Chromatogr. A, 2017, 1486:20-34.

    10. [10]

      SESTAK J, MORAVCOVA D, KAHLE V. J. Chromatogr. A, 2015, 1421:2-17.

    11. [11]

    12. [12]

    13. [13]

    14. [14]

      PARK S Y, CHEONG W J. J. Sep. Sci., 2015, 38(17):2938-2944.

    15. [15]

      JUNG H K, MUN M, ALI A, CHEONG W J. Acta Chromatogr., 2020, 32(1):22-27.

    16. [16]

      PARKIN M C, LONGMOORE A M, TURFUS S C, BRAITHWAITE R A, COWAN D A, ELLIOTT S, KICMAN A T. J. Chromatogr. A, 2013, 1277:1-6.

    17. [17]

      ZHANG B, LIU Q, YANG L J, WANG Q Q. J. Chromatogr. A, 2013, 1272:136-140.

    18. [18]

      CHEN J R, DULAY M T, ZARE R N, SVEC F, PETERS E. Anal. Chem., 2000, 72(6):1224-1227.

    19. [19]

      XIA S M, YUAN H M, LIANG Z, ZHANG L H, ZHANG Y K. Chin. Chem. Lett., 2015, 26(9):1068-1072.

    20. [20]

      PARK S Y, CHEONG W J. J. Sep. Sci., 2016, 39(10):1799-1803.

    21. [21]

      KEUNCHKARIAN S, LEBED P J, SLIZ B B, CASTELLS C B, GAGLIARDI L G. Anal. Chim. Acta, 2014, 820:168-175.

    22. [22]

      MACNAIR J E, LEWIS K C, JORGENSON J W. Anal. Chem., 1997, 69(6):983-989.

    23. [23]

      HONG S H, CHEONG W J. J. Sep. Sci., 2016, 39(2):243-246.

    24. [24]

      MARTIN S E, SHABANOWITZ J, HUNT D F, MARTO J A. Anal. Chem., 2000, 72(18):4266-4274.

    25. [25]

      BRAGG W, SHAMSI S A. Sep. Sci. Technol., 2013, 48(17):2589-2599.

    26. [26]

      AHSAN N, BELMONT J, CHEN Z, CLIFTON J G, SALOMON A R. J. Proteomics, 2017, 165:69-74.

    27. [27]

      ZHANG B, BERGSTROEM E T, GOODALL D M, MYERS P. Anal. Chem., 2007, 79(23):9229-9233.

    28. [28]

      XIAO Z L, WANG L, LIU Y, WANG Q Q, ZHANG B. J. Chromatogr. A, 2014, 1325:109-114.

    29. [29]

      HAN J, YE L Q, XU L J, ZHOU Z H, GAO F, XIAO Z L, WANG Q Q, ZHANG B. Anal. Chim. Acta, 2014, 852:267-273.

    30. [30]

      YANG L J, XU L J, GUO R, GAO T Y, GUO H X, YU Y, LV J J, WANG Q Q, ZHANG B. Anal. Chim. Acta, 2018, 1033:205-212.

    31. [31]

      LIU Y, SUN K Y, SHAO C Y, SHI X H, ZENG J X, GUO R, ZHANG B. J. Chromatogr. A, 2021, 1648:462218.

    32. [32]

      LIU Y, WANG X F, CHEN Z Q, LIANG D H, SUN K Y, HUANG S Q, ZHU J, SHI X H, ZENG J X, WANG Q Q, ZHANG B. Anal. Chim. Acta, 2019, 1062:147-155.

    33. [33]

      LI K, HU W Y, ZHOU Y Y, DOU X N, WANG X Y, ZHANG B, GUO G S. Talanta, 2020, 215:120896.

    34. [34]

      LIU L N, ZHANG B, ZHANG Q, SHI Y H, GUO L P, YANG L. J. Chromatogr. A, 2014, 1352:80-86.

    35. [35]

      MALIK A, LI W B, LEE M L. J. Microcolumn Sep., 1993, 5(4):361-369.

    36. [36]

      YAN C. United States Patent, US5453163, 1995.

    37. [37]

      WAHAB M F, PATEL D C, WIMALASINGHE R M, ARMSTRONG D W. Anal. Chem., 2017, 89(16):8177-8191.

    38. [38]

      BRUNS S, FRANKLIN E G, GRINIAS J P, GODINHO J M, JORGENSON J W, TALLAREK U. J. Chromatogr. A, 2013, 1318:189-197.

    39. [39]

      CAPRIOTTI F, LEONARDIS I, CAPPIELLO A, FAMIGLINI G, PALMA P. Chromatographia, 2013, 76(17-18):1079-1086.

    40. [40]

      FERMIER A M, COLON L A. J. Microcolumn Sep., 1998, 10(5):439-447.

    41. [41]

      LIU Y, WEN H R, CHEN S Y, WANG X J, ZHU X D, LUO L Z, WANG X F, ZHANG B. Anal. Chem., 2022, 94(23):8126-8131.

    42. [42]

      WANG X F, ZHU J, YANG C Y, QIN F, ZHANG B. Anal. Chem., 2021, 93(24):8450-8458.

    43. [43]

      SAITO Y, JINNO K, GREIBROKK T. J. Sep. Sci., 2004, 27(17-18):1379-1390.

    44. [44]

      GILAR M, MCDONALD T S, GRITTI F. J. Chromatogr. A, 2017, 1523:215-223.

    45. [45]

      ABIAN J, OOSTERKAMP A J, GELPI E. J. Mass Spectrom., 1999, 34(4):244-254.

    46. [46]

      YI L, PIEHOWSKI P D, SHI T J, SMITH R D, QIAN W J. J. Chromatogr. A, 2017, 1523:40-48.

    47. [47]

      WEBBER K G, TRUONG T, JOHNSTON S M, ZAPATA S E, LIANG Y, DAVIS J M, BUTTARS A D, SMITH F B, JONES H E, MAHONEY A C, CARSON R H, NWOSU A J, HENINGER J L, LIYU A V, NORDIN G P, ZHU Y, KELLY R T. Anal. Chem., 2022, 94(15):6017-6025.

    48. [48]

      YANG Y, SU Y, WANG X, GAO W N, LU X, LAM H, TIAN R J. Anal. Chim. Acta, 2022, 1201:339615.

    49. [49]

      MUELLER J B, HANSEN F M, SCHWEIZER L, TREIT P V, GEYER P E, MANN M. Mol. Cell. Proteomics, 2021, 20:100082.

    50. [50]

      MA S J, WANG Y, ZHANG N, LYU J W, MA C, XU J W, LI X W, OU J J, YE M L. Anal. Chem., 2020, 92(2):2274-2282.

    51. [51]

      CHENG J H, MORIN G B, CHEN D D. Electrophoresis, 2020, 41(5-6):370-378.

    52. [52]

      CLAIR G, PIEHOWSKI P D, NICOLA T, KITZMILLER J A, HUANG E L, ZINK E M, SONTAG R L, ORTON D J, MOORE R J, CARSON J P, SMITH R D, WHITSETT J A, CORLEY R A, AMBALAVANAN N, ANSONG C. Sci. Rep., 2016, 6:39223.

    53. [53]

      SHISHKOVA E, HEBERT A S, WESTPHALL M S, COON J J. Anal. Chem., 2018, 90(19):11503-11508.

    54. [54]

      CONG Y Z, LIANG Y R, MOTAMEDCHABOKI K, HUGUET R, TRUONG T, ZHAO R, SHEN Y F, LOPEZ D, ZHU Y, KELLY R T. Anal. Chem., 2020, 92(3):2665-2671.

    55. [55]

      TRANG H K, MARCUS R K. Electrophoresis, 2020, 41(3-4):215-224.

    56. [56]

      HATA K, IZUMI Y, HARA T, MATSUMOTO M, BAMBA T. Anal. Chem., 2020, 92(4):2997-3005.

    57. [57]

      ROCA L S, GARGANO A F, SCHOENMAKERS P J. Anal. Chim. Acta, 2021, 1156:338349.

    58. [58]

      KWIATKOWSKI M, KROESSER D, WURLITZER M, STEFFEN P, BARCARU A, KRISP C, HORVATOVICH P, BISCHOFF R, SCHLUETER H. Anal. Chem., 2018, 90(16):9951-9958.

    59. [59]

      KULAK N A, GEYER P E, MANN M. Mol. Cell. Proteomics, 2017, 16(4):694-705.

    60. [60]

      REN J T, BECKNER M A, LYNCH K B, CHEN H, ZHU Z F, YANG Y, CHEN A P, QIAO Z Z, LIU S R, LU J J. Talanta, 2018, 182:225-229.

    61. [61]

      WANG Z, YU D H, CUPP K A, LIU X W, SMITH K, WU S. Anal. Chem., 2020, 92(19):12774-12777.

    62. [62]

      AYDOGAN C, RIGANO F, KRCMOVA L K, CHUNG D S, MACKA M, MONDELLO L. Anal. Chem., 2020, 92(17):11485-11497.

    63. [63]

      SHAN L, JONES B R. Biomed. Chromatogr., 2022, 36(5):e5317.

    64. [64]

      KAPLITZ A S, KRESGE G A, SELOVER B, HORVAT L, FRANKLIN E G, GODINHO J M, GRINIAS K M, FOSTER S W, DAVIS J J, GRINIAS J P. Anal. Chem., 2020, 92(1):67-84.

    65. [65]

      CHETWYND A J, OGILVIE L A, NZAKIZWANAYO J, PAZDIREK F, HOCH J, DEDI C, GILBERT D, ABDUL A, JONES B V, HILL E M. J. Chromatogr. A, 2019, 1600:127-136.

    66. [66]

      DANNE N, COMAN C, AHRENDS R. Anal. Chem., 2018, 90(13):8093-8101.

    67. [67]

      DENG J J, ZHANG G A, NEUBERT T A. Methods Mol. Biol., 2018, 1741:125-134.

    68. [68]

      SORENSEN M J, KENNEDY R T. J. Chromatogr. A, 2021, 1635:461706.

    69. [69]

      CERRATO A, BEDIA C, CAPRIOTTI A L, CAVALIERE C, GENTILE V, MAGGI M, MONTONE C M, PIOVESANA S, SCIARRA A, TAULER R, LAGANA A. Anal. Chim. Acta, 2021, 1158:338381.

    70. [70]

      CHETWYND A J, ABDULSADA A, HILL E M. Anal. Chem., 2015, 87(2):1158-1165.

    71. [71]

      JONES D R, WU Z P, CHAUHAN D, ANDERSON K C, PENG J M. Anal. Chem., 2014, 86(7):3667-3675.

    72. [72]

      LUO X, LI L. Anal. Chem., 2017, 89(21):11664-11671.

    73. [73]

      STOLL M L, KUMAR R, LEFKOWITZ E J, CRON R Q, MORROW C D, BARNES S. Genes Immun., 2016, 17(7):400-405.

    74. [74]

      FARROKHI V, CHEN X Y, NEUBERT H. Clin. Chem., 2018, 64(2):279-288.

    75. [75]

      MITRAGOTRI S, BURKE P A, LANGER R. Nat. Rev. Drug Discovery, 2014, 13(9):655-672.

    76. [76]

      THOMPSON J H, CHUNG W K, ZHU M, TIE L, LU Y L, ABOULAICH N, STROUSE R, MO W J. Rapid Commun. Mass Spectrom., 2014, 28(8):855-860.

    77. [77]

      MADUNIC K, ZHANG T, MAYBORODA O A, HOLST S, STAVENHAGEN K, JIN C S, KARLSSON N G, LAGEVEEN G S, WUHRER M. Cell. Mol. Life Sci., 2021, 78(1):337-350.

    78. [78]

      HIGEL F, SEIDL A, DEMELBAUER U, SORGEL F, FRIEB W. MAbs, 2014, 6(4):894-903.

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    3. [3]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    4. [4]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    5. [5]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    6. [6]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    7. [7]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    8. [8]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    9. [9]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    10. [10]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    11. [11]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    12. [12]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    13. [13]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    14. [14]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    15. [15]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    16. [16]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    17. [17]

      Jiantao Zai Hongjin Chen Xiao Wei Li Zhang Li Ma Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023

    18. [18]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    19. [19]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

    20. [20]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

Metrics
  • PDF Downloads(10)
  • Abstract views(675)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return