Citation: CHENG Shi-Qi,  YANG Jin,  QIN Shang-Ying,  HUANG Li,  SHI Rui,  WANG Yi-Lin. Molecularly Imprinted Glucose Electrochemical Sensor Sensitized by Carbon Quantum Dots[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 549-558. doi: 10.19756/j.issn.0253-3820.221338 shu

Molecularly Imprinted Glucose Electrochemical Sensor Sensitized by Carbon Quantum Dots

  • Corresponding author: WANG Yi-Lin, theanalyst@163.com
  • Received Date: 9 July 2022
    Revised Date: 16 October 2022

    Fund Project: Supported by the Innovation Project of Guangxi Graduate Education (No. YCSW2021050) and the Opening Project of Guangxi Key Laboratory of Electrochemical Energy Materials (No. KF2020012).

  • An enzyme-free molecularly imprinted electrochemical sensor was constructed for highly sensitive determination of glucose. The molecular imprinting polymer was electro-deposited on the surface of carbon quantum dots and chitosan modified glassy carbon electrode using 3-aminobenzeneboronic acid as functional monomer and glucose as template molecule. The electrochemical and analytical characteristics of the sensor were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry. Under the optimal conditions, variation of the peak current of the sensor showed good linear correlation with the glucose concentration in the range of 0.1-1.0 μmol/L and 1.0-300 μmol/L, respectively. The linear regression equations were ΔIp (μA)=3.792 + 23.41C (R2=0.9968) and ΔIp (μA)=28.18 +0.1316C (R2=0.9914), respectively, with a detection limit of 0.034 μmol/L (3σ/k). The method exhibited potential application in detection of glucose in body fluids with recoveries of 95.1%-106.8%.
  • 加载中
    1. [1]

      MA C, SUN Z, CHEN C, ZHANG L, ZHU S. Food Chem., 2014, 145:784-788.

    2. [2]

      GEORGELIS N, FENCIL K, RICHAEL C M. Food Chem., 2018, 262:191-198.

    3. [3]

    4. [4]

      FENG L, YANG J, ZHANG S, ZHANG L, CHEN X, LI P, GAO Y, XIE S, ZHANG Y, WANG H. Analyst, 2020, 145(15):5273-5279.

    5. [5]

      JABARIYAN S, ZANJANCHI M A, ARVAND M, SOHRABNEZHAD S. Spectrochim. Acta, Part A, 2018, 203:294-300.

    6. [6]

    7. [7]

    8. [8]

      MENG W, WEN Y Y, DAI L, HE Z X, WANG L. Sens. Actuators, B, 2018, 260:852-860.

    9. [9]

      GUO C Y, LI H, ZHANG X, HUO H H, XU C L. Sens. Actuators, B, 2015, 206:407-414.

    10. [10]

      TIAN K J, LIU H, DONG Y P, CHU X F, WANG S B. Colloids Surf., A, 2019, 581:123808.

    11. [11]

      LIU W, WU X, LI X. RSC Adv., 2017, 7(58):36744-36749.

    12. [12]

      ÖZCAN L, ŞAHIN Y, TÜRK H. Biosens. Bioelectron., 2008, 24(4):512-517.

    13. [13]

      WANG J, BAO W, ZHANG L. Anal. Methods, 2012, 4(12):4009-4013.

    14. [14]

      KIM D M, MOON J M, LEE W C, YOON J H, CHOI C S, SHIM Y B. Biosens. Bioelectron., 2017, 91:276-283.

    15. [15]

      WANG C, WANG Q, ZHONG M, KAN X. Analyst, 2016, 141(20):5792-5798.

    16. [16]

      AYANKOJO A G, REUT J, CIOCAN V, ÖPIK A, SYRITSKI V. Talanta, 2020, 209:120502-120512.

    17. [17]

      WANG H, DENG K Q, XIAO J, LI C X, ZHANG S W, LI X F. Sens. Actuators, B, 2020, 304:127363-127371.

    18. [18]

      DENG K, XIAO J, LIU Z, LI C, WANG J, YI Q, HUANG H, ZHOU H. Biosens. Bioelectron., 2021, 181:113152.

    19. [19]

    20. [20]

      YEASMIN S, WU B, LIU Y, ULLAH A, CHENG L J. Biosens. Bioelectron., 2022, 206:114142.

    21. [21]

      RADI A, ABD-ELLATIEF M R. Electroanalysis, 2021, 33(6):1578-1584.

    22. [22]

    23. [23]

      HUANG Q, ZHAO Z, NIE D, JIANG K, GUO W, FAN K, ZHANG Z, MENG J, WU Y, HAN Z. Anal. Chem., 2019, 91(6):4116-4123.

    24. [24]

      ABBAS M W, SOOMRO R A, KALWAR N H, ZAHOOR M, AVCI A, PEHLIVAN E, HALLAM K R, WILLANDER M. Microchem. J., 2019, 146:517-524.

    25. [25]

      LI R Z, DU L J, HU Y, LIU X Y, LIU G. Sens. Mater., 2021, 33(10):3657-3674.

    26. [26]

      WEI Y Y, ZHANG D, FANG Y X, WANG H, LIU Y Y, XU Z F, WANG S J, GUO Y. J. Sens., 2019, 2019:9869682.

    27. [27]

      YUAN C, QIN X, XU Y, JING Q, SHI R, WANG Y. Microchem. J., 2020, 159:105365.

    28. [28]

      THAMBIRAJ S, RAVI SHANKARAN D. Appl. Surf. Sci., 2016, 390:435-443.

    29. [29]

      BORNA S, SABZI R E, PIRSA S. J. Mater. Sci.:Mater. Electron., 2021, 32(8):10866-10879.

    30. [30]

      WANG X, LI M J, YANG S, SHAN J J. Electrochim. Acta, 2020, 359(14):11065-11070.

    31. [31]

      CUI H F, WU W W, LI M M, SONG X, LV Y, ZHANG T T. Biosens. Bioelectron., 2018, 99:223-229.

    32. [32]

      YAN Z, YANG X, HUA Y, LI Z, LIU Y, LIN Y. Microchem. J., 2021, 169:106520.

    33. [33]

      ZHANG J, GUO X T, ZHOU J P, LIU G Z, ZHANG S Y. Mater. Sci. Eng., C, 2018, 91:696-704.

    34. [34]

      WANG B, LIU F, WU Y Y, CHEN Y F, WENG B, LI C M. Sens. Actuators, B, 2018, 255:2601-2607.

    35. [35]

      RECKSIEDLER C L, DEORE B A, FREUND M S. Langmuir, 2005, 21(8):3670-3674.

    36. [36]

      BUFFON E, STRADIOTTO N R. Sens. Actuators, B, 2019, 287:371-379.

    37. [37]

      LIU L, WANG J, WANG C, WANG G. Appl. Surf. Sci., 2016, 390:303-310.

    38. [38]

      DAI H, CAO P, CHEN D, LI Y, WANG N, MA H, LIN M. Synth. Met., 2018, 235:97-102.

    39. [39]

      CHO S J, NOH H B, WON M S, CHO C H, KIM K B, SHIM Y B. Biosens. Bioelectron., 2018, 99:471-478.

    40. [40]

      YANG Y, YI C, LUO J, LIU R, LIU J, JIANG J, LIU X. Biosens. Bioelectron., 2011, 26(5):2607-2612.

    41. [41]

      YE D X, LIANG G H, LI H X, LUO J, ZHANG S, CHENG H, KONG J L. Talanta, 2013, 116:223-230.

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    3. [3]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    7. [7]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    11. [11]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    12. [12]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    13. [13]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    14. [14]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    15. [15]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    18. [18]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    19. [19]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    20. [20]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

Metrics
  • PDF Downloads(16)
  • Abstract views(1533)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return