Citation:
WANG Chuang, QIN Lu-Yuan, LI Dong-Mei, XUE Jin-Juan, GUO Lei, TANG Li. Application Advance of Nanomaterials in Laser Desorption/Ionization Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry,
;2023, 51(2): 172-183.
doi:
10.19756/j.issn.0253-3820.221328
-
Nanomaterial-based laser desorption/ionization mass spectrometry (LDI-MS) technique has emerged and bloomed in recent years. Taking the advantages of nanomaterials, including high laser desorption and transfer efficiency, large specific surface area, and inert ionization, LDI-MS owned the cutting-edge advances such as high sensitivity, speediness, high throughput, and clean spectrum background. This review summarizes the application advances of nanomaterials in LDI-MS in biomedical analysis over the past 10 years, categorized by carbon-based nanomaterials, silicon-based nanomaterials, metal-organic frameworks, covalent organic frameworks, and metalbased nanomaterials. It compares the influence of different functionalization or composite material on the issues containing sensitivity and analyte kinds, and briefly illustrates the application of various nanomaterials on mass spectrometric imaging techniques that focuses on the applicability of the spatial distribution of internal and external metabolites. Finally, the key issues and prospects of this field are depicted.
-
-
-
[1]
CHIANG C K, CHEN W T, CHANG H T. Chem. Soc. Rev., 2011, 40(3):1269-1281.
-
[2]
MCLEAN J A, STUMPO K A, RUSSELL D H. J. Am. Chem. Soc., 2005, 127(15):5304-5305.
-
[3]
TANAKA K, WAKI H, IDO Y, AKITA S, YOSHIDA Y, YOSHIDA T, MATSUO T. Rapid Commun. Mass Spectrom., 1988, 2(8):151-153.
-
[4]
YANG H, SU R, WISHNOK J S, LIU N, CHEN C, LIU S, TANNENBAUM S R. Microchim. Acta, 2019, 186(2):104.
-
[5]
MA W, LI J, LI X, BAI Y, LIU H. Small Methods, 2021, 5(10):2100762.
-
[6]
VAN ECK N J, WALTMAN L. Scientometrics, 2010, 84(2):523-538.
-
[7]
DONG X, CHENG J, LI J, WANG Y. Anal. Chem., 2010, 82(14):6208-6214.
-
[8]
CHIEN H J, LAI S M, WANG W C, LIN H Y, JUANG Y M, LAI P S, LAI C C. Anal. Bioanal. Chem., 2020, 412(17):4057-4065.
-
[9]
LIU Y, LIU J, YIN P, GAO M, DENG C, ZHANG X. J. Mass Spectrom., 2011, 46(8):804-815.
-
[10]
LIU J, LIU Y, GAO M, ZHANG X. J. Am. Soc. Mass Spectrom., 2012, 23(8):1424-1427.
-
[11]
ZHANG J, DONG X, CHENG J, LI J, WANG Y. J. Am. Soc. Mass Spectrom., 2011, 22(7):1294-1298.
-
[12]
ZHU Z, SHEN J, WANG D, CHEN C, XU Y, GUO H, KANG D, HAMADA N, DONG J, WANG G, LIANG Y. Anal. Bioanal. Chem., 2019, 411(5):1041-1052.
-
[13]
ZHU Z, SHEN J, XU Y, GUO H, KANG D, YU T, WANG H, XU W, WANG G, LIANG Y. J. Mass Spectrom., 2019, 54(8):684-692.
-
[14]
GULBAKAN B, YASUN E, SHUKOOR M I, ZHU Z, YOU M, TAN X, SANCHEZ H, POWELL D H, DAI H, TAN W. J. Am. Chem. Soc., 2010, 132(49):17408-17410.
-
[15]
ZHANG J, ZHENG X, NI Y. J. Am. Soc. Mass Spectrom., 2015, 26(8):1291-1298.
-
[16]
TANG H, WANG Y, LI S, WU J, LI J, ZHOU H, GAO Z. Anal. Bioanal. Chem., 2019, 411(26):7039-7049.
-
[17]
SHI C, MENG J, DENG C. Chem. Commun., 2012, 48(18):2418.
-
[18]
-
[19]
MIN Q, ZHANG X, CHEN X, LI S, ZHU J J. Anal. Chem., 2014, 86(18):9122-9130.
-
[20]
LIN Z, ZHENG J, LIN G, TANG Z, YANG X, CAI Z. Anal. Chem., 2015, 87(15):8005-8012.
-
[21]
CHEN S, ZHENG H, WANG J, HOU J, HE Q, LIU H, XIONG C, KONG X, NIE Z. Anal. Chem., 2013, 85(14):6646-6652.
-
[22]
LU W, LI R, SHUANG S, DONG C, CAI Z. Talanta, 2018, 190:89-94.
-
[23]
LIN Z, WU J, DONG Y, XIE P, ZHANG Y, CAI Z. Anal. Chem., 2018, 90(18):10872-10880.
-
[24]
WEI J, BURIAK J M, SIUZDAK G. Nature, 1999, 399(6733):243-246.
-
[25]
GUINAN T M, KIRKBRIDE P, DELLA VEDOVA C B, KERSHAW S G, KOBUS H, VOELCKER N H. Analyst, 2015, 140(23):7926-7933.
-
[26]
MINHAS R S, ANTUNEZ E E, GUINAN T M, GENGENBACH T R, RUDD D A, VOELCKER N H. ACS Nano, 2020, 5(10):3226-3236.
-
[27]
WALKER B N, ANTONAKOS C, RETTERER S T, VERTES A. Angew. Chem. Int. Ed., 2013, 52(13):3650-3653.
-
[28]
ALHMOUD H Z, GUINAN T M, ELNATHAN R, KOBUS H, VOELCKER N H. Analyst, 2014, 139(22):5999-6009.
-
[29]
STOPKA S A, HOLMES X A, KORTE A R, COMPTON L R, RETTERER S T, VERTES A. Adv. Funct. Mater., 2018, 28(29):1801730.
-
[30]
HAMDI A, ENJALBAL C, DROBECQ H, BOUKHERROUB R, MELNYK O, EZZAOUIA H, COFFINIER Y. Rapid Commun. Mass Spectrom., 2018, 33(S1):66-74.
-
[31]
ÇELIKBıÇAK Ö, DEMIREL G, PIŞKIN E, SALIH B. Anal. Chim. Acta, 2012, 729:54-61.
-
[32]
GO E P, APON J V, LUO G, SAGHATELIAN A, DANIELS R H, SAHI V, DUBROW R, CRAVATT B F, VERTES A, SIUZDAK G. Anal. Chem., 2005, 77(6):1641-1646.
-
[33]
WYATT M F, DING S, STEIN B K, BRENTON A G, DANIELS R H. J. Am. Soc. Mass Spectrom., 2010, 21(7):1256-1259.
-
[34]
HUA Y, DAGAN S, WICKRAMASEKARA S, BODAY D J, WYSOCKI V H. J. Mass Spectrom., 2010, 45(12):1394-1401.
-
[35]
CHENG Y C, CHEN K H, WANG J S, HSU W L, CHIEN C C, CHEN W Y, TSAO C W. Analyst, 2012, 137(3):654-661.
-
[36]
PICCA R A, CALVANO C D, LO FARO M J, FAZIO B, TRUSSO S, OSSI P M, NERI F, D'ANDREA C, IRRERA A, CIOFFI N. J. Mass Spectrom., 2016, 51(9):849-856.
-
[37]
LV R, WU E, WU R, SHEN W, MA C, SHI R, GUO R, SHAO M, LIU J. J. Mater. Chem. B, 2020, 8(34):7792-7800.
-
[38]
SHIH Y H, CHIEN C H, SINGCO B, HSU C L, LIN C H, HUANG H Y. Chem. Commun., 2013, 49(43):4929-4931.
-
[39]
HAN G, ZENG Q, JIANG Z, XING T, HUANG C, LI Y. Talanta, 2017, 164:355-361.
-
[40]
CHEN L, OU J, WANG H, LIU Z, YE M, ZOU H. ACS Appl. Mater. Interfaces, 2016, 8(31):20292-20300.
-
[41]
WU J, OUYANG D, HE Y, SU H, YANG B, LI J, SUN Q, LIN Z, CAI Z. ACS Appl. Mater. Interfaces, 2019, 11(41):38255-38264.
-
[42]
YANG X, XIA Y. Microchim. Acta, 2016, 183(7):2235-2240.
-
[43]
MA W, XU S, AI W, LIN C, BAI Y, LIU H. Chem. Commun., 2019, 55(48):6898-6901.
-
[44]
LI Z, LIU Q, LU X, DENG C, SUN N, YANG X. Talanta, 2019, 194:329-335.
-
[45]
LI Z J, GONG C C, HUO P P, DENG C H, PU S Z. R. Soc. Chem. Adv., 2020, 10(49):29061-29067.
-
[46]
FENG D, XIA Y. Anal. Chim. Acta, 2018, 1014:58-63.
-
[47]
WANG S, NIU H, CAO D, CAI Y. Talanta, 2019, 194:522-527.
-
[48]
TAN W, XU X, LV Y, LEI W, HU K, YE F, ZHAO S. J. Colloid Interface Sci., 2021, 603:172-181.
-
[49]
HU K, LV Y, YE F, CHEN T, ZHAO S. Anal. Chem., 2019, 91(9):6353-6362.
-
[50]
GE K, PENG Y, LU Z, HU Y, LI G. J. Chromatogr. A, 2020, 1615:460741.
-
[51]
ZHANG Y, SONG Y, WU J, LI R, HU D, LIN Z, CAI Z. Chem. Commun., 2019, 55(26):3745-3748.
-
[52]
XIONG F, JIANG L, JIA Q. Anal. Chim. Acta, 2020, 1099:103-110.
-
[53]
COLAIANNI L, KUNG S C, TAGGART D K, PICCA R A, GREAVES J, PENNER R M, CIOFFI N. Anal. Bioanal. Chem., 2014, 406(19):4571-4583.
-
[54]
HSIEH Y T, CHEN W T, CHANG H T. J. Chin. Chem. Soc, 2011, 58(6):761-768.
-
[55]
SILINA Y E, MEIER F, NEBOLSIN V A, KOCH M, VOLMER D A. J. Am. Soc. Mass Spectrom., 2014, 25(5):841-851.
-
[56]
XU Q, TIAN R, LU C, LI H. ACS Appl. Mater. Interfaces, 2018, 10(51):44751-44759.
-
[57]
YANG X, HU X K, LOBODA A V, LIPSON R H. Adv. Mater., 2010, 22(40):4520-4523.
-
[58]
KIM Y K, WANG L S, LANDIS R, KIM C S, VACHET R W, ROTELLO V M. Nanoscale, 2017, 9(30):10854-10860.
-
[59]
KIM J I, RYU S Y, PARK J M, NOH J Y, KANG M J, KWAK S Y, PYUN J C. Rapid Commun. Mass Spectrom., 2014, 28(22):2427-2436.
-
[60]
GHOLIPOUR Y, GIUDICESSI S L, NONAMI H, ERRA-BALSELLS R. Anal. Chem., 2010, 82(13):5518-5526.
-
[61]
-
[62]
-
[63]
OCSOY I, GULBAKAN B, SHUKOOR M I, XIONG X, CHEN T, POWELL D H, TAN W. ACS Nano, 2013, 7(1):417-427.
-
[64]
HOU J, CHEN S, CAO C, LIU H, XIONG C, ZHANG N, HE Q, SONG W, NIE Z. Rapid Commun. Mass Spectrom., 2016, 30:208-216.
-
[65]
KAILASA S K, KIRAN K, WU H F. Anal. Chem., 2008, 80(24):9681-9688.
-
[66]
SHASTRI L A, KAILASA S K, WU H F. Rapid Commun. Mass Spectrom., 2009, 23(15):2247-2252.
-
[67]
ABDELHAMID H N, CHEN Z Y, WU H F. Anal. Bioanal. Chem., 2017, 409(21):4943-4950.
-
[68]
ZHOU D, GUO S, ZHANG M, LIU Y, CHEN T, LI Z. Anal. Chim. Acta, 2017, 962:52-59.
-
[69]
WANG T, LEE H K, YUE G G L, CHUNG A C K, LAU C B S, CAI Z. Analyst, 2021, 146(1):289-295.
-
[70]
STOPKA S A, RONG C, KORTE A R, YADAVILLI S, NAZARIAN J, RAZUNGUZWA T T, MORRIS N J, VERTES A. Angew. Chem. Int. Ed., 2016, 55(14):4482-4486.
-
[71]
FINCHER J A, JONES D R, KORTE A R, DYER J E, PARLANTI P, POPRATILOFF A, BRANTNER C A, MORRIS N J, PIRLO R K, SHANMUGAM V K, VERTES A. Sci. Rep., 2019, 9:17508.
-
[72]
HANSEN R L, DUEÑAS M E, LEE Y J. J. Am. Soc. Mass Spectrom., 2018, 30(2):299-308.
-
[73]
KURCZY M E, ZHU Z J, IVANISEVIC J, SCHUYLER A M, LALWANI K, SANTIDRIAN A F, DAVID J M, GIDDABASAPPA A, ROBERTS A J, OLIVOS H J, O'BRIEN P J, FRANCO L, FIELDS M W, PARIS L P, FRIEDLANDER M, JOHNSON C H, EPSTEIN A A, GENDELMAN H E, WOOD M R, FELDING B H, PATTI G J, SPILKER M E, SIUZDAK G. Nat. Commun., 2015, 6:5998.
-
[74]
PALERMO A, FORSBERG E M, WARTH B, AISPORNA A E, BILLINGS E, KUANG E, BENTON H P, BERRY D, SIUZDAK G. ACS Nano, 2018, 12(7):6938-6948.
-
[75]
WU Q, CHU J L, RUBAKHIN S S, GILLETTE M U, SWEEDLER J V. Chem. Sci., 2017, 8(5):3926-3938.
-
[76]
CHEN C, LAVIOLETTE S R, WHITEHEAD S N, RENAUD J B, YEUNG K K C. J. Am. Soc. Mass Spectrom., 2021, 32(4):1065-1079.
-
[77]
XUE J, LIU H, CHEN S, XIONG C, ZHAN L, SUN J, NIE Z. Sci. Adv., 2018, 4(10):eaat9039.
-
[1]
-
-
-
[1]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[2]
Xiaoyu YANG , Yejun ZHANG , Yu ZOU , Hongchao YANG , Jiang JIANG , Qiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122
-
[3]
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
-
[4]
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
-
[5]
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
-
[6]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[7]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[8]
Shasha SUN , Weichun HUANG , Mengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430
-
[9]
Lina Feng , Guoyu Jiang , Xiaoxia Jian , Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171
-
[10]
Hanmei Lü , Xin Chen , Qifu Sun , Ning Zhao , Xiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016
-
[11]
Xinran Zhang , Siqi Liu , Yichi Chen , Qingli Zou , Qinghong Xu , Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104
-
[12]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[13]
Yang Meiqing , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046
-
[14]
Renyi Shao , Khurram Abbas , Vladimir Yu. Osipov , Haimei Zhu , Yuan Li , Usama , Hong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134
-
[15]
Xianyong Lu , Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037
-
[16]
Yan Zhang , Xiaoyan Cao , Yiming Li , Shuwei Xia , Mutai Bao . Comparison of Electrolyte Solutions Section in Physical Chemistry Textbooks at Home and Abroad. University Chemistry, 2025, 40(9): 303-309. doi: 10.12461/PKU.DXHX202502027
-
[17]
Jiandong Liu , Zhijia Zhang , Kamenskii Mikhail , Volkov Filipp , Eliseeva Svetlana , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-0. doi: 10.3866/PKU.WHXB202308048
-
[18]
Qiang HU , Zhiqi CHEN , Zhong CHEN , Xu WANG , Weina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086
-
[19]
. . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.
-
[20]
Tinghui AN , Dong XIANG , Jiaqi LI , Jiawei WANG , Shuming YU , Nan WANG , Kedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412
-
[1]
Metrics
- PDF Downloads(14)
- Abstract views(3190)
- HTML views(316)
Login In
DownLoad: