Citation: WANG Chuang,  QIN Lu-Yuan,  LI Dong-Mei,  XUE Jin-Juan,  GUO Lei,  TANG Li. Application Advance of Nanomaterials in Laser Desorption/Ionization Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 172-183. doi: 10.19756/j.issn.0253-3820.221328 shu

Application Advance of Nanomaterials in Laser Desorption/Ionization Mass Spectrometry

  • Corresponding author: GUO Lei,  TANG Li, 
  • Received Date: 2 July 2022
    Revised Date: 18 August 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 21974152, 81873397, 22104149).

  • Nanomaterial-based laser desorption/ionization mass spectrometry (LDI-MS) technique has emerged and bloomed in recent years. Taking the advantages of nanomaterials, including high laser desorption and transfer efficiency, large specific surface area, and inert ionization, LDI-MS owned the cutting-edge advances such as high sensitivity, speediness, high throughput, and clean spectrum background. This review summarizes the application advances of nanomaterials in LDI-MS in biomedical analysis over the past 10 years, categorized by carbon-based nanomaterials, silicon-based nanomaterials, metal-organic frameworks, covalent organic frameworks, and metalbased nanomaterials. It compares the influence of different functionalization or composite material on the issues containing sensitivity and analyte kinds, and briefly illustrates the application of various nanomaterials on mass spectrometric imaging techniques that focuses on the applicability of the spatial distribution of internal and external metabolites. Finally, the key issues and prospects of this field are depicted.
  • 加载中
    1. [1]

      CHIANG C K, CHEN W T, CHANG H T. Chem. Soc. Rev., 2011, 40(3):1269-1281.

    2. [2]

      MCLEAN J A, STUMPO K A, RUSSELL D H. J. Am. Chem. Soc., 2005, 127(15):5304-5305.

    3. [3]

      TANAKA K, WAKI H, IDO Y, AKITA S, YOSHIDA Y, YOSHIDA T, MATSUO T. Rapid Commun. Mass Spectrom., 1988, 2(8):151-153.

    4. [4]

      YANG H, SU R, WISHNOK J S, LIU N, CHEN C, LIU S, TANNENBAUM S R. Microchim. Acta, 2019, 186(2):104.

    5. [5]

      MA W, LI J, LI X, BAI Y, LIU H. Small Methods, 2021, 5(10):2100762.

    6. [6]

      VAN ECK N J, WALTMAN L. Scientometrics, 2010, 84(2):523-538.

    7. [7]

      DONG X, CHENG J, LI J, WANG Y. Anal. Chem., 2010, 82(14):6208-6214.

    8. [8]

      CHIEN H J, LAI S M, WANG W C, LIN H Y, JUANG Y M, LAI P S, LAI C C. Anal. Bioanal. Chem., 2020, 412(17):4057-4065.

    9. [9]

      LIU Y, LIU J, YIN P, GAO M, DENG C, ZHANG X. J. Mass Spectrom., 2011, 46(8):804-815.

    10. [10]

      LIU J, LIU Y, GAO M, ZHANG X. J. Am. Soc. Mass Spectrom., 2012, 23(8):1424-1427.

    11. [11]

      ZHANG J, DONG X, CHENG J, LI J, WANG Y. J. Am. Soc. Mass Spectrom., 2011, 22(7):1294-1298.

    12. [12]

      ZHU Z, SHEN J, WANG D, CHEN C, XU Y, GUO H, KANG D, HAMADA N, DONG J, WANG G, LIANG Y. Anal. Bioanal. Chem., 2019, 411(5):1041-1052.

    13. [13]

      ZHU Z, SHEN J, XU Y, GUO H, KANG D, YU T, WANG H, XU W, WANG G, LIANG Y. J. Mass Spectrom., 2019, 54(8):684-692.

    14. [14]

      GULBAKAN B, YASUN E, SHUKOOR M I, ZHU Z, YOU M, TAN X, SANCHEZ H, POWELL D H, DAI H, TAN W. J. Am. Chem. Soc., 2010, 132(49):17408-17410.

    15. [15]

      ZHANG J, ZHENG X, NI Y. J. Am. Soc. Mass Spectrom., 2015, 26(8):1291-1298.

    16. [16]

      TANG H, WANG Y, LI S, WU J, LI J, ZHOU H, GAO Z. Anal. Bioanal. Chem., 2019, 411(26):7039-7049.

    17. [17]

      SHI C, MENG J, DENG C. Chem. Commun., 2012, 48(18):2418.

    18. [18]

    19. [19]

      MIN Q, ZHANG X, CHEN X, LI S, ZHU J J. Anal. Chem., 2014, 86(18):9122-9130.

    20. [20]

      LIN Z, ZHENG J, LIN G, TANG Z, YANG X, CAI Z. Anal. Chem., 2015, 87(15):8005-8012.

    21. [21]

      CHEN S, ZHENG H, WANG J, HOU J, HE Q, LIU H, XIONG C, KONG X, NIE Z. Anal. Chem., 2013, 85(14):6646-6652.

    22. [22]

      LU W, LI R, SHUANG S, DONG C, CAI Z. Talanta, 2018, 190:89-94.

    23. [23]

      LIN Z, WU J, DONG Y, XIE P, ZHANG Y, CAI Z. Anal. Chem., 2018, 90(18):10872-10880.

    24. [24]

      WEI J, BURIAK J M, SIUZDAK G. Nature, 1999, 399(6733):243-246.

    25. [25]

      GUINAN T M, KIRKBRIDE P, DELLA VEDOVA C B, KERSHAW S G, KOBUS H, VOELCKER N H. Analyst, 2015, 140(23):7926-7933.

    26. [26]

      MINHAS R S, ANTUNEZ E E, GUINAN T M, GENGENBACH T R, RUDD D A, VOELCKER N H. ACS Nano, 2020, 5(10):3226-3236.

    27. [27]

      WALKER B N, ANTONAKOS C, RETTERER S T, VERTES A. Angew. Chem. Int. Ed., 2013, 52(13):3650-3653.

    28. [28]

      ALHMOUD H Z, GUINAN T M, ELNATHAN R, KOBUS H, VOELCKER N H. Analyst, 2014, 139(22):5999-6009.

    29. [29]

      STOPKA S A, HOLMES X A, KORTE A R, COMPTON L R, RETTERER S T, VERTES A. Adv. Funct. Mater., 2018, 28(29):1801730.

    30. [30]

      HAMDI A, ENJALBAL C, DROBECQ H, BOUKHERROUB R, MELNYK O, EZZAOUIA H, COFFINIER Y. Rapid Commun. Mass Spectrom., 2018, 33(S1):66-74.

    31. [31]

      ÇELIKBıÇAK Ö, DEMIREL G, PIŞKIN E, SALIH B. Anal. Chim. Acta, 2012, 729:54-61.

    32. [32]

      GO E P, APON J V, LUO G, SAGHATELIAN A, DANIELS R H, SAHI V, DUBROW R, CRAVATT B F, VERTES A, SIUZDAK G. Anal. Chem., 2005, 77(6):1641-1646.

    33. [33]

      WYATT M F, DING S, STEIN B K, BRENTON A G, DANIELS R H. J. Am. Soc. Mass Spectrom., 2010, 21(7):1256-1259.

    34. [34]

      HUA Y, DAGAN S, WICKRAMASEKARA S, BODAY D J, WYSOCKI V H. J. Mass Spectrom., 2010, 45(12):1394-1401.

    35. [35]

      CHENG Y C, CHEN K H, WANG J S, HSU W L, CHIEN C C, CHEN W Y, TSAO C W. Analyst, 2012, 137(3):654-661.

    36. [36]

      PICCA R A, CALVANO C D, LO FARO M J, FAZIO B, TRUSSO S, OSSI P M, NERI F, D'ANDREA C, IRRERA A, CIOFFI N. J. Mass Spectrom., 2016, 51(9):849-856.

    37. [37]

      LV R, WU E, WU R, SHEN W, MA C, SHI R, GUO R, SHAO M, LIU J. J. Mater. Chem. B, 2020, 8(34):7792-7800.

    38. [38]

      SHIH Y H, CHIEN C H, SINGCO B, HSU C L, LIN C H, HUANG H Y. Chem. Commun., 2013, 49(43):4929-4931.

    39. [39]

      HAN G, ZENG Q, JIANG Z, XING T, HUANG C, LI Y. Talanta, 2017, 164:355-361.

    40. [40]

      CHEN L, OU J, WANG H, LIU Z, YE M, ZOU H. ACS Appl. Mater. Interfaces, 2016, 8(31):20292-20300.

    41. [41]

      WU J, OUYANG D, HE Y, SU H, YANG B, LI J, SUN Q, LIN Z, CAI Z. ACS Appl. Mater. Interfaces, 2019, 11(41):38255-38264.

    42. [42]

      YANG X, XIA Y. Microchim. Acta, 2016, 183(7):2235-2240.

    43. [43]

      MA W, XU S, AI W, LIN C, BAI Y, LIU H. Chem. Commun., 2019, 55(48):6898-6901.

    44. [44]

      LI Z, LIU Q, LU X, DENG C, SUN N, YANG X. Talanta, 2019, 194:329-335.

    45. [45]

      LI Z J, GONG C C, HUO P P, DENG C H, PU S Z. R. Soc. Chem. Adv., 2020, 10(49):29061-29067.

    46. [46]

      FENG D, XIA Y. Anal. Chim. Acta, 2018, 1014:58-63.

    47. [47]

      WANG S, NIU H, CAO D, CAI Y. Talanta, 2019, 194:522-527.

    48. [48]

      TAN W, XU X, LV Y, LEI W, HU K, YE F, ZHAO S. J. Colloid Interface Sci., 2021, 603:172-181.

    49. [49]

      HU K, LV Y, YE F, CHEN T, ZHAO S. Anal. Chem., 2019, 91(9):6353-6362.

    50. [50]

      GE K, PENG Y, LU Z, HU Y, LI G. J. Chromatogr. A, 2020, 1615:460741.

    51. [51]

      ZHANG Y, SONG Y, WU J, LI R, HU D, LIN Z, CAI Z. Chem. Commun., 2019, 55(26):3745-3748.

    52. [52]

      XIONG F, JIANG L, JIA Q. Anal. Chim. Acta, 2020, 1099:103-110.

    53. [53]

      COLAIANNI L, KUNG S C, TAGGART D K, PICCA R A, GREAVES J, PENNER R M, CIOFFI N. Anal. Bioanal. Chem., 2014, 406(19):4571-4583.

    54. [54]

      HSIEH Y T, CHEN W T, CHANG H T. J. Chin. Chem. Soc, 2011, 58(6):761-768.

    55. [55]

      SILINA Y E, MEIER F, NEBOLSIN V A, KOCH M, VOLMER D A. J. Am. Soc. Mass Spectrom., 2014, 25(5):841-851.

    56. [56]

      XU Q, TIAN R, LU C, LI H. ACS Appl. Mater. Interfaces, 2018, 10(51):44751-44759.

    57. [57]

      YANG X, HU X K, LOBODA A V, LIPSON R H. Adv. Mater., 2010, 22(40):4520-4523.

    58. [58]

      KIM Y K, WANG L S, LANDIS R, KIM C S, VACHET R W, ROTELLO V M. Nanoscale, 2017, 9(30):10854-10860.

    59. [59]

      KIM J I, RYU S Y, PARK J M, NOH J Y, KANG M J, KWAK S Y, PYUN J C. Rapid Commun. Mass Spectrom., 2014, 28(22):2427-2436.

    60. [60]

      GHOLIPOUR Y, GIUDICESSI S L, NONAMI H, ERRA-BALSELLS R. Anal. Chem., 2010, 82(13):5518-5526.

    61. [61]

    62. [62]

    63. [63]

      OCSOY I, GULBAKAN B, SHUKOOR M I, XIONG X, CHEN T, POWELL D H, TAN W. ACS Nano, 2013, 7(1):417-427.

    64. [64]

      HOU J, CHEN S, CAO C, LIU H, XIONG C, ZHANG N, HE Q, SONG W, NIE Z. Rapid Commun. Mass Spectrom., 2016, 30:208-216.

    65. [65]

      KAILASA S K, KIRAN K, WU H F. Anal. Chem., 2008, 80(24):9681-9688.

    66. [66]

      SHASTRI L A, KAILASA S K, WU H F. Rapid Commun. Mass Spectrom., 2009, 23(15):2247-2252.

    67. [67]

      ABDELHAMID H N, CHEN Z Y, WU H F. Anal. Bioanal. Chem., 2017, 409(21):4943-4950.

    68. [68]

      ZHOU D, GUO S, ZHANG M, LIU Y, CHEN T, LI Z. Anal. Chim. Acta, 2017, 962:52-59.

    69. [69]

      WANG T, LEE H K, YUE G G L, CHUNG A C K, LAU C B S, CAI Z. Analyst, 2021, 146(1):289-295.

    70. [70]

      STOPKA S A, RONG C, KORTE A R, YADAVILLI S, NAZARIAN J, RAZUNGUZWA T T, MORRIS N J, VERTES A. Angew. Chem. Int. Ed., 2016, 55(14):4482-4486.

    71. [71]

      FINCHER J A, JONES D R, KORTE A R, DYER J E, PARLANTI P, POPRATILOFF A, BRANTNER C A, MORRIS N J, PIRLO R K, SHANMUGAM V K, VERTES A. Sci. Rep., 2019, 9:17508.

    72. [72]

      HANSEN R L, DUEÑAS M E, LEE Y J. J. Am. Soc. Mass Spectrom., 2018, 30(2):299-308.

    73. [73]

      KURCZY M E, ZHU Z J, IVANISEVIC J, SCHUYLER A M, LALWANI K, SANTIDRIAN A F, DAVID J M, GIDDABASAPPA A, ROBERTS A J, OLIVOS H J, O'BRIEN P J, FRANCO L, FIELDS M W, PARIS L P, FRIEDLANDER M, JOHNSON C H, EPSTEIN A A, GENDELMAN H E, WOOD M R, FELDING B H, PATTI G J, SPILKER M E, SIUZDAK G. Nat. Commun., 2015, 6:5998.

    74. [74]

      PALERMO A, FORSBERG E M, WARTH B, AISPORNA A E, BILLINGS E, KUANG E, BENTON H P, BERRY D, SIUZDAK G. ACS Nano, 2018, 12(7):6938-6948.

    75. [75]

      WU Q, CHU J L, RUBAKHIN S S, GILLETTE M U, SWEEDLER J V. Chem. Sci., 2017, 8(5):3926-3938.

    76. [76]

      CHEN C, LAVIOLETTE S R, WHITEHEAD S N, RENAUD J B, YEUNG K K C. J. Am. Soc. Mass Spectrom., 2021, 32(4):1065-1079.

    77. [77]

      XUE J, LIU H, CHEN S, XIONG C, ZHAN L, SUN J, NIE Z. Sci. Adv., 2018, 4(10):eaat9039.

  • 加载中
    1. [1]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    2. [2]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

    3. [3]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    4. [4]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    5. [5]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    8. [8]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    9. [9]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    10. [10]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    11. [11]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    12. [12]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    13. [13]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    14. [14]

      Renyi ShaoKhurram AbbasVladimir Yu. OsipovHaimei ZhuYuan LiUsamaHong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134

    15. [15]

      Xianyong Lu Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037

    16. [16]

      Yan Zhang Xiaoyan Cao Yiming Li Shuwei Xia Mutai Bao . Comparison of Electrolyte Solutions Section in Physical Chemistry Textbooks at Home and Abroad. University Chemistry, 2025, 40(9): 303-309. doi: 10.12461/PKU.DXHX202502027

    17. [17]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-0. doi: 10.3866/PKU.WHXB202308048

    18. [18]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    19. [19]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    20. [20]

      Tinghui ANDong XIANGJiaqi LIJiawei WANGShuming YUNan WANGKedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412

Metrics
  • PDF Downloads(14)
  • Abstract views(3190)
  • HTML views(316)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return