Citation: LI Jia-Xin,  LIU Meng-Ting,  LU Chao-Fen,  XU Ya-Juan,  CAO Qiu-E,  ZHOU Chuan-Hua. Microwave-assisted Synthesis of Boron and Nitrogen-doped Carbon Dots for Detection of Ascorbic Acid[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 211-218. doi: 10.19756/j.issn.0253-3820.221314 shu

Microwave-assisted Synthesis of Boron and Nitrogen-doped Carbon Dots for Detection of Ascorbic Acid

  • Corresponding author: ZHOU Chuan-Hua, chzhou@ynu.edu.cn
  • Received Date: 27 June 2022
    Revised Date: 14 August 2022

    Fund Project: Supported by the Youth Top-notch Talants of Yunan Ten Thousand Talents Plan, China.

  • By using ethylenediamine as carbon source and nitrogen source, and 4-hydroxyphenylboronic acid as boron dopant, the boron and nitrogen-doped carbon dots (B,N-CDs) were synthesized in one step using a microwaveassisted method. Its morphology and optical properties were characterized by transmission electron microscopy, ultraviolet-visible absorption spectroscopy, fluorescence spectroscopy, and X-ray photoelectron spectroscopy, respectively. The maximum excitation and emission wavelengths of the carbon dots were 400 nm and 510 nm, respectively. By taking quinine sulfate as a reference, the relative quantum yield of the carbon dots was 9.94%. The presence of Fe3+ could quench the fluorescence of the B,N-CDs, and the fluorescence recovery took place in the presence of ascorbic acid (AA) by reducing Fe3+ to Fe2+. Based on this, a new fluorescence analysis method for detecting AA was established with good selectivity. The fluorescence recovery degree of B,N-CDs showed a good linear relationship with AA concentration in the range of 1.0-80.0 μmol/L, and the detection limit was 0.49 μmol/L (S/N=3). The method was applied to determination of AA in fruit juice with satisfactory results.
  • 加载中
    1. [1]

      WANG C, HALAWA M I, LOU B, GAO W, LI J, XU G. Analyst, 2021, 146(6):1981-1985.

    2. [2]

      JIANG Y, XIAO X, LI C, LUO Y, CHEN S, SHI G, HAN K, GU H. Anal. Chem., 2020, 92(5):3981-3989.

    3. [3]

      DONG H, ZHOU Y, ZHAO L, HAO Y, ZHANG Y, YE B, XU M. Anal. Chem., 2020, 92(22):15079-15086.

    4. [4]

    5. [5]

      LI X, ZHOU C H, ZI Q, CAO Q E. J. Electroanal. Chem., 2016, 780:321-326.

    6. [6]

      RAOOF J B, KIANI A, OJANI R, VALIOLLAHI R, RASHID-NADIMI S. J. Solid State Electrochem., 2010, 14(7):1171-1176.

    7. [7]

      LI H, ZHOU Y, DU J. J. Photochem. Photobiol. A, 2022, 429:113945.

    8. [8]

      ABE C, HIGUCHI O, MATSUMOTO A, MIYAZAWA T. Analyst, 2022, 147(12):2640-2643.

    9. [9]

      YANG X, ZHANG M, ZHANG Y, WANG N, BIAN W, CHOI M M F. Anal. Methods, 2019, 11(45):5803-5809.

    10. [10]

      SU D, HAN X, YAN X, JIN R, LI H, KONG D, GAO H, LIU F, SUN P, LU G. Anal. Chem., 2020, 92(18):12716-12724.

    11. [11]

      HAN Z, NAN D, YANG H, SUN Q, PAN S, LIU H, HU X. Sens. Actuators, B, 2019, 298:126842.

    12. [12]

      SHU Y, LU J, MAO Q X, SONG R S, WANG X Y, CHEN X W, WANG J H. Carbon, 2017, 114:324-333.

    13. [13]

      KRISHNA A S, RADHAKUMARY C, ANTONY M, SREENIVASAN K. J. Mater. Chem. B, 2014, 2(48):8626-8632.

    14. [14]

      WEN X, SHI L, WEN G, LI Y, DONG C, YANG J, SHUANG S. Sens. Actuators, B, 2016, 235:179-187.

    15. [15]

    16. [16]

      MIAO S, LIANG K, ZHU J, YANG B, ZHAO D, KONG B. Nano Today, 2020, 33:100879.

    17. [17]

      LUO X, ZHANG W, HAN Y, CHEN X, ZHU L, TANG W, WANG J, YUE T, LI Z. Food Chem., 2018, 258:214-221.

    18. [18]

      YUAN Y H, LIU Z X, LI R S, ZOU H Y, LIN M, LIU H, HUANG C Z. Nanoscale, 2016, 8(12):6770-6776.

    19. [19]

      SHAN X, CHAI L, MA J, QIAN Z, CHEN J, FENG H. Analyst, 2014, 139(10):2322-2325.

    20. [20]

      LI F, YANG D, XU H. Chem. Eur. J., 2019, 25(5):1165-1176.

    21. [21]

      SINGH V K, SINGH V, YADAV P K, CHANDRA S, BANO D, KUMAR V, KOCH B, TALAT M, HASAN S H. New J. Chem., 2018, 42(15):12990-12997.

    22. [22]

      DE MEDEIROS T V, MANIOUDAKIS J, NOUN F, MACAIRAN J R, VICTORIA F, NACCACHE R. J. Mater. Chem. C, 2019, 7(24):7175-7195.

    23. [23]

      LI H, XU Y, DING J, ZHAO L, ZHOU T, DING H, CHEN Y, DING L. Microchim. Acta, 2018, 185(2):104.

    24. [24]

      WANG X, QU K, XU B, REN J, QU X. J. Mater. Chem., 2011, 21(8):2445-2450.

    25. [25]

      XIAO Q, LIANG Y, ZHU F, LU S, HUANG S. Microchim. Acta, 2017, 184(7):2429-2438.

    26. [26]

      PEI Y, SONG H, LIU Y, CHENG Y, LI W, CHEN Y, FAN Y, LIU B, LU S. J. Colloid Interface Sci., 2021, 600:865-871.

    27. [27]

      CHANG Y, YUAN C, LI Y, LIU C, WU T, ZENG B, XU Y, DAI L. J. Mater. Chem. A, 2017, 5(4):1672-1678.

    28. [28]

      LIU H, LIU Z, ZHANG J, ZHI L, WU M. New Carbon Mater., 2021, 36(3):585-593.

    29. [29]

      YAN F, SHI D, ZHENG T, YUN K, ZHOU X, CHEN L. Sens. Actuators, B, 2016, 224:926-935.

    30. [30]

      MA F, LUO J, LI X, LIU S, YANG M, CHEN X. Spectrochim. Acta, Part A, 2021, 249:119343.

    31. [31]

      JEROME R, SUNDRAMOORTHY A K. J. Electrochem. Soc., 2019, 166(9):B3017-B3024.

    32. [32]

      WANG T, LUO H, JING X, YANG J, HUO M, WANG Y. Molecules, 2021, 26(5):1246.

    33. [33]

      DARABDHARA G, SHARMA B, DAS M R, BOUKHERROUB R, SZUNERITS S. Sens. Actuators, B, 2017, 238:842-851.

    34. [34]

  • 加载中
    1. [1]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    2. [2]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    3. [3]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    4. [4]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    10. [10]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    11. [11]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    12. [12]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    13. [13]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    14. [14]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    15. [15]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    16. [16]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    17. [17]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    18. [18]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

Metrics
  • PDF Downloads(10)
  • Abstract views(1334)
  • HTML views(221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return