Citation: YU Hui,  YAO Yi-Chen,  XU Xue-Zhe,  WEI Na-Na,  ZHAO Wei-Xiong,  ZHANG Wei-Jun. Study on Atmospheric Ozone Photochemical Production Rate Based on In-situ Measurement of Peroxy Radical[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 287-295. doi: 10.19756/j.issn.0253-3820.221313 shu

Study on Atmospheric Ozone Photochemical Production Rate Based on In-situ Measurement of Peroxy Radical

  • Corresponding author: ZHAO Wei-Xiong, wxzhao@aiofm.ac.cn
  • Received Date: 2 June 2022
    Revised Date: 29 August 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No. U21A2028), the National Research Program for Key Issues in Air Pollution Control, China (No. DQGG202117), the Youth Innovation Promotion Association, CAS (No. Y202089) and the HFIPS Director′s Fund (No. YZJJ202101).

  • Peroxy radicals (RO2* = RO2 + HO2) are key intermediates in the atmospheric oxidation of volatile organic compounds, and play a key role in the degradation of primary atmospheric pollution and the formation of secondary pollutants. It is of great significance to accurately measure the concentration of RO2* for understanding the atmospheric chemical reaction mechanism and the cause of atmospheric pollution. In this work, a broadband cavity enhanced absorption spectroscopy-chemically amplified peroxy radical instrument was used to measure the peroxy radical in-situ. Combined with the measurement of NO, the photochemical ozone production rate could be determined in real time. Observations were made in Huaibei city during summer 2021, to characterize ozone production. The results showed that the average peaking peroxy radical concentration was 75×10-12(V/V), while the average ozone peaking production rate was 14×10-12(V/V) in summer in Huaibei. The ozone production rate was more sensitive to the NO concentration changes. In addition, during the pollution period, the photochemical generation of ozone increased significantly, which made an important contribution to the local high concentration of O3.
  • 加载中
    1. [1]

      HOFZUMAHAUS A, ROHRER F, LU K, BOHN B, BRAUERS T, CHANG C C, FUCHS H, HOLLAND F, KITA K, KONDO Y, LI X, LOU S, SHAO M, ZENG L, WAHNER A, ZHANG Y. Science, 2009, 324(5935):1702-1704.

    2. [2]

      STONE D, WHALLEY L K, HEARD D E. Chem. Soc. Rev., 2012, 41(19):6348-6404.

    3. [3]

      LU X, ZHANG L, WANG X, GAO M, LI K, ZHANG Y, YUE X, ZHANG Y. Environ. Sci. Technol. Lett., 2020, 7(4):240-247.

    4. [4]

    5. [5]

      TAN Z, ROHRER F, LU K, MA X, BOHN B, BROCH S, DONG H, FUCHS H, GKATZELIS G I, HOFZUMAHAUS A, HOLLAND F, LI X, LIU Y, LIU Y, NOVELLI A, SHAO M, WANG H, WU Y, ZENG L, HU M, KIENDLER-SCHARR A, WAHNER A, ZHANG Y. Atmos. Chem. Phys., 2018, 18(16):12391-12411.

    6. [6]

      LU K D, ROHRER F, HOLLAND F, FUCHS H, BOHN B, BRAUERS T, CHANG C C, HÄSELER R, HU M, KITA K, KONDO Y, LI X, LOU S R, NEHR S, SHAO M, ZENG L M, WAHNER A, ZHANG Y H, HOFZUMAHAUS A. Atmos. Chem. Phys., 2012, 12(3):1541-1569.

    7. [7]

      ZHANG G, HU R, XIE P, LOU S, WANG F, WANG Y, QIN M, LI X, LIU X, WANG Y, LIU W. Sci. Total Environ., 2022, 810:152275.

    8. [8]

      YANG X, LU K, MA X, LIU Y, WANG H, HU R, LI X, LOU S, CHEN S, DONG H, WANG F, WANG Y, ZHANG G, LI S, YANG S, YANG Y, KUANG C, TAN Z, CHEN X, QIU P, ZENG L, XIE P, ZHANG Y. Sci. Total Environ., 2021, 772:144829.

    9. [9]

      XUE L K, SAUNDERS S M, WANG T, GAO R, WANG X F, ZHANG Q Z, WANG W X. Geosci. Model Dev., 2015, 8(10):3151-3162.

    10. [10]

      PENG X, WANG W, XIA M, CHEN H, RAVISHANKARA A R, LI Q, SAIZ-LOPEZ A, LIU P, ZHANG F, ZHANG C, XUE L, WANG X, GEORGE C, WANG J, MU Y, CHEN J, WANG T. Natl. Sci. Rev., 2021, 8(7):nwaa304.

    11. [11]

      WHALLEY L K, STONE D, DUNMORE R, HAMILTON J, HOPKINS J R, LEE J D, LEWIS A C, WILLIAMS P, KLEFFMANN J, LAUFS S, WOODWARD-MASSEY R, HEARD D E. Atmos. Chem. Phys., 2018, 18(4):2547-2571.

    12. [12]

      TAN Z, MA X, LU K, JIANG M, ZOU Q, WANG H, ZENG L, ZHANG Y. Sci. Total Environ., 2021, 800:148868.

    13. [13]

      MIHELCIC D, VOLZ-THOMAS A, PATZ H W, KLEY D, MIHELCIC M. J. Atmos. Chem., 1990, 11(3):271-297.

    14. [14]

      FUCHS H, BRAUERS T, HÄSELER R, HOLLAND F, MIHELCIC D, MÜSGEN P, ROHRER F, WEGENER R, HOFZUMAHAUS A. Atmos. Meas. Tech., 2009, 2(1):55-64.

    15. [15]

      FUCHS H, HOLLAND F, HOFZUMAHAUS A. Rev. Sci. Instruments, 2008, 79(8):084104.

    16. [16]

      WHALLEY L K, BLITZ M A, DESSERVETTAZ M, SEAKINS P W, HEARD D E. Atmos. Meas. Tech., 2013, 6(12):3425-3440.

    17. [17]

      CANTRELL C A, STEDMAN D H, WENDEL G J. Anal. Chem., 1984, 56(8):1496-1502.

    18. [18]

      HERNÁNDEZ M D A, BURKERT J, REICHERT L, STÖBENER D, MEYER-ARNEK J, BURROWS J P, DICKERSON R R, DODDRIDGE B G. J. Geophys. Res.:Atmos., 2001, 106(D18):20833-20846.

    19. [19]

      LIU Y, MORALES-CUETO R, HARGROVE J, MEDINA D, ZHANG J. Environ. Sci. Technol., 2009, 43(20):7791-7796.

    20. [20]

      WOOD E C, CHAREST J R. Anal. Chem., 2014, 86(20):10266-10273.

    21. [21]

      GEORGE M, ANDRÉS HERNÁNDEZ M D, NENAKHOV V, LIU Y, BURROWS J P. Atmos. Meas. Tech., 2020, 13(5):2577-2600.

    22. [22]

      CHEN Y, YANG C, ZHAO W, FANG B, XU X, GAI Y, LIN X, CHEN W, ZHANG W. Analyst, 2016, 141(20):5870-5878.

    23. [23]

      YANG C, ZHAO W, FANG B, XU X, ZHANG Y, GAI Y, ZHANG W, VENABLES D S, CHEN W. Anal. Chem., 2018, 90(5):3307-3312.

    24. [24]

      YANG C, ZHAO W, FANG B, YU H, XU X, ZHANG Y, GAI Y, ZHANG W, CHEN W, FITTSCHEN C. Anal. Chem., 2019, 91(1):776-779.

    25. [25]

      WASHENFELDER R A, WAGNER N L, DUBE W P, BROWN S S. Environ. Sci. Technol., 2011, 45(7):2938-2944.

    26. [26]

      MIN K E, WASHENFELDER R A, DUBÉ W P, LANGFORD A O, EDWARDS P M, ZARZANA K J, STUTZ J, LU K, ROHRER F, ZHANG Y, BROWN S S. Atmos. Meas. Tech., 2016, 9(2):423-440.

    27. [27]

      THALMAN R, VOLKAMER R. Atmos. Meas. Tech., 2010, 3(6):1797-1814.

    28. [28]

      ZHAO W, XU X, DONG M, CHEN W, GU X, HU C, HUANG Y, GAO X, HUANG W, ZHANG W. Atmos. Meas. Tech., 2014, 7(8):2551-2566.

    29. [29]

      FANG B, ZHAO W, XU X, ZHOU J, MA X, WANG S, ZHANG W, VENABLES D S, CHEN W. Opt. Express, 2017, 25(22):26910-26922.

    30. [30]

      ANDERSON D C, PAVELEC J, DAUBE C, HERNDON S C, KNIGHTON W B, LERNER B M, ROSCIOLI J R, YACOVITCH T I, WOOD E C. Atmos. Chem. Phys., 2019, 19(5):2845-2860.

    31. [31]

      ORLANDO J J, TYNDALL G S. Chem. Soc. Rev., 2012, 41(19):6294-6317.

    32. [32]

      GRIFFITH S M, HANSEN R F, DUSANTER S, MICHOUD V, GILMAN J B, KUSTER W C, VERES P R, GRAUS M, DE GOUW J A, ROBERTS J, YOUNG C, WASHENFELDER R, BROWN S S, THALMAN R, WAXMAN E, VOLKAMER R, TSAI C, STUTZ J, FLYNN J H, GROSSBERG N, LEFER B, ALVAREZ S L, RAPPENGLUECK B, MIELKE L H, OSTHOFF H D, STEVENS P S. J. Geophys. Res. Atmos., 2016, 121(8):4211-4232.

    33. [33]

      TAN Z, FUCHS H, LU K, HOFZUMAHAUS A, BOHN B, BROCH S, DONG H, GOMM S, HÄSELER R, HE L, HOLLAND F, LI X, LIU Y, LU S, ROHRER F, SHAO M, WANG B, WANG M, WU Y, ZENG L, ZHANG Y, WAHNER A, ZHANG Y. Atmos. Chem. Phys., 2017, 17(1):663-690.

  • 加载中
    1. [1]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    2. [2]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    3. [3]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    4. [4]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    7. [7]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    8. [8]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    9. [9]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    10. [10]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    11. [11]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

    12. [12]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    13. [13]

      Weigang Zhu Yun Tian Zhicheng Zhang Hongling Gao . Reform Exploration of Student Performance Assessment in Inorganic Chemistry Experimental Courses. University Chemistry, 2024, 39(10): 203-209. doi: 10.12461/PKU.DXHX202404114

    14. [14]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    15. [15]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    16. [16]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    17. [17]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    18. [18]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    20. [20]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(20)
  • Abstract views(1924)
  • HTML views(185)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return