Citation: LYU Fu-Hui,  LI Chen-Chen,  LI Yue,  CUI Lin,  LUO Xi-Liang. Advance in Applications of Metal-organic Gel[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 160-171. doi: 10.19756/j.issn.0253-3820.221312 shu

Advance in Applications of Metal-organic Gel

  • Corresponding author: LI Chen-Chen,  CUI Lin,  LUO Xi-Liang, 
  • Received Date: 26 June 2022
    Revised Date: 20 September 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 21605096, 21974080), the Taishan Scholar Program of Shandong Province (No. ts20110829) and the Natural Science Foundation of Shandong Province, China (No. ZR2021QB151).

  • Metal-organic gels (MOGs) are a kind of gel material formed by bridging metal ions and organic ligands via non covalent interactions. In comparison with metal-organic frameworks (MOFs) that require timeconsuming preparation, MOGs can be obtained by self-assembling through the coordination under mild conditions to form porous supramolecular structure via hydrogen bonding interactions, π-π stacking and van der Waals forces. MOGs possess good surface accessibility, high surface area, and multiple stimuli-responsive properties. Due to the easy preparation and large specific surface area, tunable structure, and abundant metal sites, MOGs are widely used in the fields of sensing and analysis, and also show unique advantages in the fields of catalysis, adsorption, energy storage and electrochromic devices. In this paper, the research and application progress of MOGs in the above fields in recent years is reviewed, and the challenges, future trends and application prospects are discussed.
  • 加载中
    1. [1]

      SUTAR P, MAJI T K. Dalton Trans., 2020, 49(23):7658-7672.

    2. [2]

      YU X, CHEN L, ZHANG M, YI T. Chem. Soc. Rev., 2014, 43(15):5346-5371.

    3. [3]

      LI Y, GUO M X, HE L, HUANG C Z, LI Y F. ACS Sustainable Chem. Eng., 2019, 7(5):5292-5299.

    4. [4]

      LIN Q, LU T T, ZHU X, WEI T B, LI H, ZHANG Y M. Chem. Sci., 2016, 7(8):5341-5346.

    5. [5]

      HE L, JIANG Z W, LI W, LI C M, HUANG C Z, LI Y F. ACS Appl. Mater. Interfaces, 2018, 10(34):28868-28876.

    6. [6]

      ZHANG J, SU C Y. Coord. Chem. Rev., 2013, 257(7-8):1373-1408.

    7. [7]

      IMAZ I, RUBIO-MARTÍNEZ M, SALETRA W J, AMABILINO D B, MASPOCH D. J. Am. Chem. Soc., 2009, 131(51):18222-18223.

    8. [8]

      LUISI B S, ROWLAND K D, MOULTON B. Chem. Commun., 2007, 43(27):2802-2804.

    9. [9]

      XIANG S, LI L, ZHANG J, TAN X, CUI H, SHI J, HU Y, CHEN L, SU C Y, JAMES S L. J. Mater. Chem., 2012, 22(5):1862-1867.

    10. [10]

      PENG Z W, YUAN D, JIANG Z W, LI Y F. Electrochim. Acta, 2017, 238:1-8.

    11. [11]

      HOSSEINI-MONFARED H, NÄTHER C, WINKLER H, JANIAK C. Inorg. Chim. Acta, 2012, 391:75-82.

    12. [12]

      SUI J, WANG L, ZHAO W, HAO J. Chem. Commun., 2016, 52(43):6993-6996.

    13. [13]

      HE L, PENG Z W, JIANG Z W, TANG X Q, HUANG C Z, LI Y F. ACS Appl. Mater. Interfaces, 2017, 9(37):31834-31840.

    14. [14]

      WEI S C, PAN M, LI K, WANG S, ZHANG J, SU C Y. Adv. Mater., 2014, 26(13):2072-2077.

    15. [15]

      ZHANG J, WANG X, HE L, CHEN L, SU C Y, JAMES S L. New J. Chem., 2009, 33(5):1070-1075.

    16. [16]

      SUTAR P, MAJI T K. Chem. Commun., 2016, 52(52):8055-8074.

    17. [17]

      ZHENG X, ZHANG H, REHMAN S, ZHANG P. J. Hazard. Mater., 2021, 411:125057.

    18. [18]

      LI X H, LIU Y W, LIU S M, WANG S, XU L, ZHANG Z, LUO F, LU Y, LIU S X. J. Mater. Chem. A, 2018, 6(11):4678-4685.

    19. [19]

      NGE T T, NOGI M, SUGANUMA K. J. Mater. Chem. C, 2013, 1(34):5235-5243.

    20. [20]

      CHENG Y, SUN F F, FENG Q C, ZHAO Q, ZHOU Y H. Colloid Surf., A, 2017, 522:43-50.

    21. [21]

      XU X, RANDORN C, EFSTATHIOU P, IRVINE J T S. Nat. Mater., 2012, 11(7):595-598.

    22. [22]

      SHANNON M A, BOHN P W, ELIMELECH M, GEORGIADIS J G, MARIÑAS B J, MAYES A M. Nature, 2008, 452(7185):301-310.

    23. [23]

      ZHOU X, JI Y, CAO J, XIN Z. Appl. Organometal Chem., 2018, 32(3):e4206.

    24. [24]

      YAO H, YOU X, LIN Q, WU H, WEI T, ZHANG Y. Chin. J. Chem., 2014, 32(7):607-612.

    25. [25]

      GAO Z, SUI J, XIE X, LI X, SONG S, ZHANG H, HU Y, HONG Y, WANG X, CUI J, HAO J. AIChE J., 2018, 64(10):3719-3727.

    26. [26]

      LIU Y R, HE L, ZHANG J, WANG X, SU C Y. Chem. Mater., 2009, 21(3):557-563.

    27. [27]

      LI L, XIANG S, CAO S, ZHANG J, OUYANG G, CHEN L, SU C Y. Nat. Commun., 2013, 4:1774.

    28. [28]

      WANG Z, YAN T T, CHEN G R, SHI L Y, ZHANG D S. ACS Sustainable Chem. Eng., 2017, 5(12):11637-11644.

    29. [29]

      KARABCHEVSKY A, MOSAYYEBI A, KAVOKIN A V. Light Sci. Appl., 2016, 5(11):e16164.

    30. [30]

      HAI Z, LI J, WU J, XU J, LIANG G. J. Am. Chem. Soc., 2017, 139(3):1041-1044.

    31. [31]

      ZHANG Y, CUI G, QIN N, YU X, ZHANG H, JIA X, LI X, ZHANG X, HUN X. Chem. Commun., 2020, 56(23):3421-3424.

    32. [32]

      YUAN D, ZHANG Y D, JIANG Z W, PENG Z W, HUANG C Z, LI Y F. Mater. Lett., 2018, 211:157-160.

    33. [33]

      GU D, YANG W, LIN D, QIN X, YANG Y, WANG F, PAN Q, SU Z. J. Mater. Chem. C, 2020, 8(39):13648-13654.

    34. [34]

      ZHAO T T, JIANG Z W, ZHEN S J, HUANG C Z, LI Y F. Microchim. Acta, 2019, 186(3):168.

    35. [35]

      ZHAO Y, YU J, XU G, SOJIC N, LOGET G. J. Am. Chem. Soc., 2019, 141(33):13013-13016.

    36. [36]

      LI Y, JIANG Z W, XIAO S Y, HUANG C Z, LI Y F. Anal. Chem., 2018, 90(20):12191-12197.

    37. [37]

      LI L, CHEN Y, ZHU J J. Anal. Chem., 2017, 89(1):358-371.

    38. [38]

      LIU G, MA C, JIN B K, CHEN Z, CHENG F L, ZHU J J. Anal. Chem., 2019, 91(4):3021-3026.

    39. [39]

      CUI L, WU J, JU H. ACS Appl. Mater. Interfaces, 2014, 6(18):16210-16216.

    40. [40]

      ZHANG Y, CHEN Y F, NIE Y M, YANG Z Z, YUAN R, WANG H J, CHAI Y Q. J. Anal. Chem., 2022, 94(35):12196-12203.

    41. [41]

      ZHANG Y W, LIU W S, CHEN J S, NIU H L, MAO C J, JIN B K. Sens. Actuators, B, 2020, 321:128456.

    42. [42]

      WANG C, HAN Q, LIU P, ZHANG G, SONG L, ZOU X, FU Y. ACS Sens., 2021, 6(1):252-258.

    43. [43]

      CUI L, ZHAO M, LI C, WANG Q, LUO X, ZHANG C. Anal. Chem., 2021, 93(5):2974-2981.

    44. [44]

      GUO M X, LI Y F. Spectrochim. Acta, Part A, 2019, 207:236-241.

    45. [45]

      YANG X, LIU R, ZHONG Z, HUANG H, SHAO J, XIE X, ZHANG Y, WANG W, DONG X. Chem. Eng. J., 2021, 409:127381.

    46. [46]

      LIN T, QIN Y, HUANG Y, YANG R, HOU L, YE F, ZHAO S. Chem. Commun., 2018, 54(14):1762-1765.

    47. [47]

      LIU X, WANG Q, ZHAO H, ZHANG L, SU Y, LV Y. Analyst, 2012, 137(19):4552-4558.

    48. [48]

      WU Q, HE L, JIANG Z W, LI Y, CAO Z M, HUANG C Z, LI Y F. Biosens. Bioelectron., 2019, 145:111704.

    49. [49]

      SONG C, YANG B, YANG Y, WANG L. Sci. China Chem., 2016, 59(1):16-29.

    50. [50]

      YUAN Y, PANWAR N, YAP S H K, WU Q, ZENG S, XU J, TJIN S C, SONG J, QU J, YONG K T. Coord. Chem. Rev., 2017, 337:1-33.

    51. [51]

      CHENG Y, LI J, DENG S, SUN F. Compos. Commun., 2019, 13:75-79.

    52. [52]

      XIA W, QIU B, XIA D, ZOU R. Sci. Rep., 2013, 3:1935.

    53. [53]

      WANG X S, MA S, FORSTER P, YUAN D, ECKERT J, LÓPEZ J, MURPHY B, PARISE J, ZHOU H C. Angew. Chem., 2008, 120(38):7373-7376.

    54. [54]

      YUSHIN G, DASH R, JAGIELLO J, FISCHER J, GOGOTSI Y. Adv. Funct. Mater., 2006, 16(17):2288-2293.

    55. [55]

      SEVILLA M, FOULSTON R, MOKAYA R. Energy Environ. Sci., 2010, 3(2):223-227.

    56. [56]

      CHENG W, MORENO-GONZALEZ M, HU K, KRZYSZKOWSKI C, DVORAK D J, WEEKES D M, TAM B, BERLINGUETTE C P. iScience, 2018, 10:80-86.

    57. [57]

      MORTIMER R J. Chem. Soc. Rev., 1997, 26(3):147-156.

    58. [58]

      WANG Y, WANG S, WANG X, ZHANG W, ZHENG W, ZHANG Y M, ZHANG S X A. Nat. Mater., 2019, 18(12):1335-1342.

    59. [59]

      FAN H, LI K, LIU X, XU K, SU Y, HOU C, ZHANG Q, LI Y, WANG H. ACS Appl. Mater. Interfaces, 2020, 12(25):28451-28460.

    60. [60]

      BAI Z, LI R, LI K, HOU C, ZHANG Q, LI Y, WANG H. ACS Appl. Mater. Interfaces, 2020, 12(38):42955-42961.

  • 加载中
    1. [1]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    2. [2]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    4. [4]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    5. [5]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    6. [6]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    7. [7]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    8. [8]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    16. [16]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    17. [17]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    18. [18]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    19. [19]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    20. [20]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

Metrics
  • PDF Downloads(47)
  • Abstract views(2120)
  • HTML views(350)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return