Citation: WANG Xue,  WANG An-Qi,  QIAN Mei-Ru,  LI Bin-Xi,  JIN Long,  LI Tai-Hua. Rapid and Highly Sensitive Detection of Methacycline Based on Ratiometric Fluorescent Probe and Sensitizer[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 531-538. doi: 10.19756/j.issn.0253-3820.221311 shu

Rapid and Highly Sensitive Detection of Methacycline Based on Ratiometric Fluorescent Probe and Sensitizer

  • Corresponding author: LI Tai-Hua, taehwali@njfu.edu.cn
  • Received Date: 23 June 2022
    Revised Date: 8 December 2022

    Fund Project: Supported by the Natural Science Research Project of Jiangsu Province, China (No. BK20191387).

  • Water soluble bovine serum albumin-gold nanoclusters (BSA-AuNCs) with good fluorescence properties were synthesized using BSA as template. According to the highly selective fluorescence response of methacycline (MTC) to BSA-AuNCs, a rapid and highly sensitive detection method for residual MTC in water was constructed on the basis of the highly selective fluorescence response of MTC to BSA-AuNCs and the fluorescence sensitization of non-ionic surfactant Tween 20. In the presence of MTC, the green fluorescence intensity at 525 nm was significantly increased and the red fluorescence intensity at 670 nm was slightly changed in comparison with BSA-AuNCs. Furthermore, it was observed that the ratiometric signal (F525/F670) of the detection system was obviously sensitized by non-ionic surfactants. Under the optimal experimental conditions, the linear concentration range of the system for MTC was 1-100 nmol/L, and the detection limit (LOD) was 0.71 nmol/L. In addition, the recoveries of MTC in the spiked water samples were 97%-108% with a relative standard deviations (RSD) lower than 10%. The developed fluorescent probe here could be used for simple, rapid, cost-effective, highly sensitive and selective detection of MTC in real applications.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      LI J, LI W, MIN Z, ZHENG Q, HAN J, LI P. Aquat. Toxicol., 2021, 238:105911.

    5. [5]

      GARCıA I, SARABIA L A, ORTIZ M C. Anal. Chim. Acta, 2004, 501(2):193-203.

    6. [6]

    7. [7]

      MOUDGIL P, BEDI J S, AULAKH R S, GILL J P S, KUMAR A. Food Anal. Methods, 2019, 12(2):338-346.

    8. [8]

      ZHOU Q, ZHANG Y, WANG N, ZHU L, TANG H. Food Control, 2014, 46:324-331.

    9. [9]

      NAGEL O, MOLINA M P, ALTHAUS R. Int. Dairy J., 2013, 32(2):150-155.

    10. [10]

      ADRIAN J, FERNÁNDEZ F, SÁNCHEZ-BAEZA F, MARCO M P. J. Agric. Food Chem., 2012, 60(15):3837-3846.

    11. [11]

      HUANG S, YU L, SU P, WEN T, SUN M, HUANG D, WANG X, WANG S. Anal. Chim. Acta, 2022, 1197:339530.

    12. [12]

    13. [13]

      CHEN L Y, WANG C W, YUAN Z, CHANG H T. Anal. Chem., 2015, 87(1):216-229.

    14. [14]

      YU Y, LUO Z, CHEVRIER D M, LEONG D T, ZHANG P, JIANG D, XIE J. J. Am. Chem. Soc., 2014, 136(4):1246-1249.

    15. [15]

      ZHANG Z, TIAN Y, HUANG P, WU F Y. Talanta, 2020, 208:120342.

    16. [16]

      LI M, ZHU N, ZHU W, ZHANG S, LI F, WU P, LI X. Microchem. J., 2021, 169:106560.

    17. [17]

      MO M, WANG X, YE L, SU Y, ZHONG Y, ZHAO L, ZHOU Y, PENG J. Anal. Chim. Acta, 2021, 1190:339257.

    18. [18]

      YANG X, ZHU S, DOU Y, ZHUO Y, LUO Y, FENG Y. Talanta, 2014, 122:36-42.

    19. [19]

      LE GUÉVEL X, HÖTZER B, JUNG G, HOLLEMEYER K, TROUILLET V, SCHNEIDER M. J. Phys. Chem. C, 2011, 115(22):10955-10963.

    20. [20]

    21. [21]

      KHAN M A, MUZAMMIL S, MUSARRAT J. Int. J. Biol. Macromolecules, 2002, 30(5):243-249.

    22. [22]

      DING L, ZHAO Y, LI H, ZHANG Q, YANG W, FU B, PAN Q. J. Hazard. Mater., 2021, 416:125759.

    23. [23]

      GHORAI S K, SAMANTA S K, MUKHERJEE M, SAHA SARDAR P, GHOSH S. Inorg. Chem., 2013, 52(3):1476-1487.

    24. [24]

    25. [25]

      SCHLECHT K D, FRANK C W. J. Pharm. Sci., 1975, 64(2):352-354.

    26. [26]

    27. [27]

      ZHOU C Q, HE X X, YA D M, ZHONG J, DENG B Y. Sens. Actuators, B, 2017, 249:256-264.

    28. [28]

      HU J, YANG X, PENG Q, WANG F, ZHU Y, HU X, ZHENG B, DU J, XIAO D. Food Control, 2020, 108:106832.

    29. [29]

      YU W, QIN Y, FAN Y, WANG Z, CHENG Z. ChemistrySelect, 2021, 6(40):10889-10897.

    30. [30]

      FAN Y, YU W, LIAO Y, JIANG X, WANG Z, CHENG Z. Spectrochim. Acta, Part A, 2022, 267:120509.

  • 加载中
    1. [1]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    6. [6]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    7. [7]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    8. [8]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    9. [9]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    12. [12]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    13. [13]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    14. [14]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    15. [15]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    16. [16]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    17. [17]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    18. [18]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

Metrics
  • PDF Downloads(10)
  • Abstract views(1610)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return