Citation: ZHU Feng-Li,  YANG Ling,  WANG Ya-Hu,  TAN Hai-Hu. Preparation of Doped Carbon Quantum Dots and Its Application in Detection of Heavy Metal Ions[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(1): 22-33. doi: 10.19756/j.issn.0253-3820.221308 shu

Preparation of Doped Carbon Quantum Dots and Its Application in Detection of Heavy Metal Ions

  • Corresponding author: TAN Hai-Hu, haihutan@163.com
  • Received Date: 22 June 2022
    Revised Date: 25 September 2022

    Fund Project: Support by the National Natural Science Foundation of China (No.51874129), the China Postdoctoral Science Foundation (No.2021M693549), the Natural Science Foundation of Hunan Province (Nos.2021JJ40178, 2021JJ40179, 2022JJ50061) and the Scientific Research Fund of Hunan Provincial Education Department (Nos.18A260, 20B169, 20B181, 21C0405).

  • In recent years, carbon quantum dots (CQDs) have attracted much attention due to their unique fluorescence properties, cheap and abundant raw materials, green and convenient synthesis process, good water solubility and biocompatibility, etc. Numerous researches have shown that the fluorescence intensity of CQDs can be enhanced or reduced once the CQDs combine with specific metal ions. Therefore, there is a good application prospect of CQDs to construct the metal ion fluorescence chemosensor. However, the performance of conventional CQDs-based probe with insufficient fluorescence intensity, poor sensitivity and limited selectivity hamper their application in the detection of heavy metal ions. Doping heteroatoms can enrich the energy level structure of CQDs by adjusting the charge density and spin density of carbon atoms, thus enhancing the fluorescence intensity of CQDs. Besides, the doped heteroatoms can also introduce abundant function groups to CQDs and provide more active sites to capture heavy metal ions, which is beneficial for the amplification of fluorescence detection signal. In this paper, the preparation of atom-doped CQDs of nitrogen, sulfur, phosphorus, zinc and copper and their application in the detection of heavy metal ions are reviewed, and the influence of atom doping on the performance of CQDs, the detection mechanism and the application effect are analyzed. On this basis, the future research direction in this field is discussed.
  • 加载中
    1. [1]

      EL ZRELLI R, YACOUBI L, WAKKAF T, CASTET S, GREGOIRE M, MANSOUR L, COURJAULT-RADE P, RABAOUI L. Mar. Pollut. Bull., 2021, 169:112512.

    2. [2]

      YUAN S G, ZHANG W Q, LI W Y, LI Z H, WU M S, SHAN B Q. Bull. Environ. Contam. Toxicol., 2022, 109(5):691-697

    3. [3]

      IRANDOOST F, AGAH H, ESLAMI Z, ROSSI L, COLLOCA F, KHALILI A, COSTANTINI M L. Mar. Pollut. Bull., 2021, 173(B):113041.

    4. [4]

      DUAN B L, FENG Q. Int. J. Environ. Res. Public Health, 2022, 19(7):4236.

    5. [5]

      ZHANG J B, PENG D M, ZHANG P, RONG Y M, LI F, ZHAO L R, CHEN C L. Water, 2022, 14(16):2523.

    6. [6]

      GAO S K, ZHANG R, ZHANG H, ZHANG S. Environ. Pollut., 2022, 297:118649.

    7. [7]

      LI B, DAO J R, ZHU R Y, HE H, MENG X Q, HAN F X. Environ. Chem., 2021, 40(6):1808-1818.

    8. [8]

      HE B H, WANG W, GENG R Y, DING Z, LUO D X, QIU J L, ZHENG G D, FAN Q H. Ecotoxicol. Environ. Saf., 2020, 207:111234.

    9. [9]

      VINODKUMAR T, VINEETHKUMAR V, VISHNU C V, SAYOOJ V V, PRAKASH V. Radiat. Prot. Environ., 2022, 44(3):152-160.

    10. [10]

      WITKOWSKA D, SLOWIK J, CHILICKA K. Molecules, 2021, 26(19):6060.

    11. [11]

      GARZA-LOMBO C, POSADAS Y, QUINTANAR L, GONSEBATT M E, FRANCO R. Antioxid. Redox Signaling, 2018, 28(18):1669-1703.

    12. [12]

      LIN T J, YEN K T, CHEN C F, YAN S T, SU K W, CHIANG Y L. Sensors, 2022, 22(8):3009.

    13. [13]

      SOYLAK M, ELZAIN HASSAN AHMED H, OZALP O. Food Chem., 2022, 388:133002.

    14. [14]

      REN J, ZHAO Y R, YU K Q. Comput. Electron. Agric., 2022, 197:106986.

    15. [15]

      BOIVIN F, VALLIERES S, FOURMAUX S, PAYEUR S, ANTICI P. New J. Phys., 2022, 24(5):053018.

    16. [16]

      VON WUTHENAU K, MULLER M S, CVANCAR L, OEST M, FISCHER M. J. Agric. Food Chem., 2022, 70(16):5237-5244.

    17. [17]

      ARDALANI M, SHAMSIPUR M, BESHARATI-SEIDANI A. J. Electroanal. Chem., 2020, 879:114788.

    18. [18]

      SABBIONI E, MANENTI S, MAGARINI R, PETRARCA C, POMA G, ZACCARIELLO G, BACK M, BENEDETTI A, DI G M, MIGNINI E, PIROTTA G, RISCASSI R, SALVINI A, GROPPI F. Anal. Chim Acta, 2022, 1200:339601.

    19. [19]

    20. [20]

      HUANG Y F, ZHANG Y B, HUO F J, WEN Y, YIN C X. Sci. China:Chem., 2020, 63(12):1742-1755.

    21. [21]

      WU X Y, MA C H, LIU J C, LIU Y S, LUO S, XU M C, WU P, LI W, LIU S X. Microchem. J., 2019, 7(23):18801-18809.

    22. [22]

      DUAN Y P, LI Z R, LIU X J, PANG H F, HUANG L X, SUN X Y, SHI Y P. J. Alloys Compd., 2022, 921:166088.

    23. [23]

    24. [24]

    25. [25]

      GUPTA S K, SUDARSHAN K, KADAM R M. Mater. Today Commun., 2021, 27:102277.

    26. [26]

      SAHU A, KUMAR D. J. Alloys Compd., 2022, 924:166508.

    27. [27]

      SHEN L, ZHOU S, HUANG F, ZHOU H, ZHANG H, WANG S, ZHOU S. Nanotechnology, 2021, 33(11):115602.

    28. [28]

      ZHANG X S, LI C H, ZHAO S L, PANG H Y, HAN Y, LUO X L, TANG W Z, LI Z H. Opt. Mater., 2020, 110:110461.

    29. [29]

      KUMAR U, LI Y N, DENG Z Y, CHIANG P C, YADAV B C, WU C H. J. Alloys Compd., 2022, 926:166828.

    30. [30]

      YAN J F, FU Q B, ZHANG S K, LIU Y, SHI X B, HOU J Y, DUAN J L, AI S Y. Spectrochim. Acta, Part A, 2022, 282:121706.

    31. [31]

      ZHANG X M, LIN Y X, GILLIES R J. J. Nucl. Med., 2010, 51(8):1167-1170.

    32. [32]

      JIANG K, SUN S, ZHANG L, LU Y, WU A G, CAI C Z, LIN H W. Angew. Chem., Int. Ed., 2015, 54(18):5360-5363.

    33. [33]

      LIU M L, YANG L, LI R S, CHEN B B, LIU H, HUANG C Z. Green Chem., 2017, 19(15):3611-3617.

    34. [34]

      ESSNER J B, KIST J A, POLO-PARADA L, BAKER G A. Chem. Mater., 2018, 30(6):1878-1887.

    35. [35]

      XU X Y, ROBERT R, GU Y L, HARRY J P, LATHA G, KYLE R, WALTER A S. J. Am. Chem. Soc., 2004, 126(40):12736-12737.

    36. [36]

      ZHU J T, CHU H Y, SHEN J W, WANG C Z, WEI Y M. Opt. Mater., 2021, 114:110941.

    37. [37]

      MARY A A, KIRAN M D, HARI G, KRISHNAN A, JAYAN J S, SARITHA A. Mater. Today:Proc., 2020, 26:716-719.

    38. [38]

      HUA X T, LI Y X, XU Y W, GAN Z Y, ZOU X B, SHI J Y, HUANG X W, LI Z H, LI Y H. Food Chem., 2021, 339:127775.

    39. [39]

      ZULFAJRI M, GEDDA G, CHANG C J, CHANG Y P, HUANG G G. ACS Omega, 2019, 4(13):15382-15392.

    40. [40]

      NAGARAJ M, RAMALINGAM S, MURUGAN C, ALDAWOOD S, JIN J O, CHOI I, KIM M. Environ. Res., 2022, 212(B):113273.

    41. [41]

      ZHAO S Y, SONG X P, CHAI X Y, ZHAO P T, HE H, LIU Z W. J. Cleaner Prod., 2020, 263:121561.

    42. [42]

      SINGH H, BAMRAH A, KHATRI M, BHARDWAJ N. Mater. Today:Proc., 2020, 28:1891-1894.

    43. [43]

      WAREING T C, GENTILE P, PHAN A N. ACS Nano, 2021, 15(10):15471-15501.

    44. [44]

      WU F S, YANG M Q, ZHANG H, ZHU S Z, ZHU X J, WANG K. Opt. Mater., 2018, 77:258-263.

    45. [45]

    46. [46]

      WANG R C, LU J T, LIN Y C. J. Alloys Compd., 2020, 813:152201.

    47. [47]

      DU F Y, CHENG Z F, TAN W, SUN L S, RUAN G H. Spectrochim. Acta, Part A, 2020, 226:117602.

    48. [48]

      OMER K M, HASSAN A Q. Microchim. Acta, 2017, 184(7):2063-2071.

    49. [49]

      SU H F, LIAO Y, WU F S, SUN X Z, LIU H J, WANG K, ZHU X J. Colloids Surf., B, 2018, 170:194-200.

    50. [50]

      LIU Y, WEI J F, YAN X, ZHAO M, GUO C Z, XU Q. Chin. Chem. Lett., 2021, 32(2):861-865.

    51. [51]

      KURUKAVAK C K, YILMAZ T, CETIN S, ALQADASI M M, AL-KHAWLANY K M, KUS M. Microelectron. Eng., 2021, 235:111465.

    52. [52]

      WANG Z H, ZHANG L, HAO Y M, DONG W J, LIU Y, SONG S M, SHUANG S M, DONG C, GONG X J. Anal. Chim. Acta, 2021, 1144:1-13.

    53. [53]

      SUN W, LIU Q Y, DA X N, HONG R J, TAO C X, WANG Q, LIN H, HAN Z X, ZHANG D W. Chem. Phys. Lett., 2022, 803:139863.

    54. [54]

      KALAIYARASAN G, HEMLATA C, JOSEPH J. ACS Omega, 2019, 4(1):1007-1014.

    55. [55]

      QI H X, ZHAI Z Z, DONG X P, ZHANG P D. Spectrochim. Acta, Part A, 2022, 279:121456.

    56. [56]

      SHAH H, XIN Q, JIA X R, GONG J R. Arabian J. Chem., 2019, 12(7):1083-1091.

    57. [57]

      PANG Z Z, FU Y J, YU H L, LIU S W, YU S T, LIU Y X, WU Q, LIU Y, NIE G K, XU H F, NIE S X, YAO S Q. Ind. Crops Prod., 2022, 183:114957.

    58. [58]

      ZHANG S R, CAI S K, WANG G Q, CUI J Z, GAO C Z. J. Mol. Struct., 2021, 1246:131173.

    59. [59]

      NGUYEN K G, BARAGAU I A, GROMICOVA R, NICOLAEV A, THOMSON S A J, RENNIE A, POWER N P, SAJJAD M T, KELLICI S. Sci. Rep., 2022, 12(1):13806.

    60. [60]

      CHEN G W, SONG F L, XIONG X Q, PENG X J. Ind. Eng. Chem. Res., 2013, 52(33):11228-11245.

    61. [61]

      NEMATI F, HOSSEINI M, ZARE-DORABEI R, SALEHNIA F, GANJALI M R. Sens. Actuators, B, 2018, 273:25-34.

    62. [62]

      CHENG N Y, JIANG P, LIU Q, TIAN J Q, ASIRI A M, SUN X P. Analyst, 2014, 139(20):5065-5068.

    63. [63]

      RAFIQ S, SCHOLES G D. J. Am. Chem. Soc., 2019, 141(2):708-722.

    64. [64]

    65. [65]

      GU S Y, HSIEH C T, ASHRAF G Y, CHANG J K, LI J, LI J L, ZHANG H A, GUO Q, LAU K C, PANDEY R. J. Mater. Chem. C, 2019, 7(18):5468-5476.

    66. [66]

      LIANG Y, SHEN Y F, LIU C L, REN X Y. J. Lumin., 2018, 197:285-290.

    67. [67]

      YIN C H, CHEN L G, NIU N. Anal. Bioanal. Chem., 2021, 413(20):5239-5249.

    68. [68]

      WANG Z, LIU Q H, LENG J P, LIU H Y, ZHANG Y X, WANG C D, AN W Q, BAO C N, LEI H. J. Saudi Chem. Soc., 2021, 25(12):101373.

    69. [69]

      YANG J L, CHEN L, JIANG Q Q, YUE X T. Fullerenes, Nanotubes, Carbon Nanostruct., 2018, 27(3):233-239.

    70. [70]

      DUFAULT R, SCHNOLL R, LUKIW W J, LEBLANC B, CORNETT C, PATRICK L, WALLINGA D, GILBERT S G, CRIDER R. Behav. Brain Funct., 2018, 14:3.

    71. [71]

      TAN A Z, YANG G H, WAN X J. Spectrochim. Acta, Part A, 2021, 253:119583.

    72. [72]

      DENG X Y, FENG Y L, LI H R, DU Z W, TENG Q, WANG H J. Particuology, 2018, 41:94-100.

    73. [73]

      YU C H, QIN D M, JIANG X H, ZHENG X F, DENG B Y. J. Pharm. Biomed. Anal., 2021, 192:113673.

    74. [74]

      LIAO S, HUANG X Q, YANG H, CHEN X Q. Anal. Bioanal. Chem., 2018, 410(29):7701-7710.

    75. [75]

      CAO G H, WEI Z F, YIN Y H, FU L G, LIU Y K, QIU S L, ZHANG B Q. Chin. Phys. B, 2021, 30(9):097802.

    76. [76]

      WANG C J, WANG Y B, SHI H X, YAN Y J, LIU E Z, HU X Y, FAN J. Mater. Chem. Phys., 2019, 232:145-151.

    77. [77]

      ZHOU J, SHAN X Y, MA J J, GU Y M, QIAN Z S, CHEN J R, FENG H. RSC Adv., 2014, 4(11):5465-5468.

    78. [78]

      ZHI B, GALLAGHER M J, FRANK B P, LYONS T Y, QIU T A, DA J, MENSCH A C, HAMERS R J, ROSENZWEIG Z, FAIRBROTHER D H, HAYNES C L. Carbon, 2018, 129:438-449.

    79. [79]

      YANG F, HE X, WANG C X, CAO Y, LI Y, YAN L N, LIU M M, LV M Z, YANG Y N, ZHAO X, LI Y F. Appl. Surf. Sci., 2018, 448:589-598.

    80. [80]

      BADARAU A, DENNISON C. J. Am. Chem. Soc., 2011, 133(9):2983-2988.

    81. [81]

      KALAIYARASAN G, JOSEPH J, KUMAR P. ACS Omega, 2020, 5(35):22278-22288.

    82. [82]

      MENG A, ZHANG Y, WANG X H, XU Q H, LI Z J, SHENG L Y, YAN L J. Colloids Surf. A, 2022, 648:129150.

    83. [83]

      JO M H, KIM K H, AHN H J. Chem. Eng. J., 2022, 445:136826.

    84. [84]

      WANG J H, LI X R, DENG Y Y, CHEN S H, LIANG W F, ZHANG L X, WEI X Y, GAO S Y, WAN Y. Appl. Surf. Sci., 2022, 599:154029.

    85. [85]

      XU Q, CAI W, ZHANG M R, SU R G, YE Y C, LI Y Q, ZHANG L P, GUO Y J, YU Z Q, LI S Y, LIN X, CHEN Y S, LUO Y, STREET J, XU M. RSC Adv., 2018, 8(31):17254-17262.

    86. [86]

      QIAN Z S, SHAN X Y, CHAI L J, MA J J, CHEN J R, FENG H. ACS Appl. Mater. Interfaces, 2014, 6(9):6797-6805.

    87. [87]

      HE H, YANG Y N, LI J F, LAI X F, CHEN X F, WANG L, ZHANG W T, HUANG Y, ZHANG P C. Mater. Sci. Eng. B, 2021, 264:114955.

    88. [88]

      SUN S J, GUAN Q W, LIU Y, WEI B, YANG Y Y, YU Z Q. Chin. Chem. Lett., 2019, 30(5):1051-1054.

    89. [89]

      XU Q, WEI J F, WANG J L, LIU Y, LI N, CHEN Y S, GAO C, ZHANG W W, SREEPRASED T S. RSC Adv., 2016, 6(34):28745-28750.

    90. [90]

      MARKOVIĆ Z M, LABUDOVÁ M, DANKO M, MATIJAŠEVIĆ D, MIČUŠÍK M, NÁDAŽDY V, KOVÁČOVÁ M, KLEINOVÁ A, ŠPITALSKY Z, PAVLOVIĆ V, MILIVOJEVIĆ D D, MEDIĆ M, TODOROVIĆ M B M. Microchem. J., 2020, 8(43):16327-16338.

    91. [91]

      DEWANGAN L, CHAWRE Y, KORRAM J, KARBHAL I, NAGWANSHI R, JAIN V, SATNAMI M L. Microchem. J., 2022, 182:107867.

    92. [92]

      SEFID-SEFIDEHKHAN Y, JOUYBAN A, RAHIMPOUR E. Microchem. J., 2022, 181:107753.

    93. [93]

      PAN J, DENG H W, DU Z Y, TIAN K, ZHANG J F. Environ. Sci. Pollut. Res. Int., 2022, 29(19):28984-28994.

    94. [94]

      LOU Y B, ZHAO Y X, CHEN J X, ZHU J J. J. Mater. Chem. C, 2014, 2(4):595-613.

    95. [95]

      SINGH V K, SINGH V, YADAV P K, CHANDRA S, BANO D, KUMAR V, KOCH B, TALAT M, HASAN S H. New J. Chem., 2018, 42(15):12990-12997.

    96. [96]

      DENG Y F, QIAN J, ZHOU Y H, LU F. Chemistselect, 2020, 5(17):5306-5311.

    97. [97]

      ZHAO B, TAN Z A. Adv. Sci., 2021, 8(7):2001977.

    98. [98]

      LU H Z, YU C W, XU S F. Sens. Actuators, B, 2019, 288:691-698.

    99. [99]

      LI J Z, LIU J H, XU L Q, CHEN J C. Polym. Int., 2017, 66(1):92-97.

    100. [100]

      KALYTCHUK S, WANG Y, POLAKOVA K, ZBORIL R. ACS Appl. Mater. Interfaces, 2018, 10(35):29902-29908.

    101. [101]

      DONG J X, LI B Q, XIAO J, LIU G X, VLADIMIR B, FENG Y J, JIA D C, ASLAN Y T, ZHOU Y. Carbon, 2022, 199:151-160.

    102. [102]

      JOSEPH F O, JACINTA F W, THOMAS R G, RACHEL A C, CARA M D. ACS Appl. Mater. Interfaces, 2022, 14(31):35755-35768.

    103. [103]

      ZHANG H Y, LI Q Y, WANG S, YU X W, WANG B L, CHEN G R, REN L, LI J Y, JIN M X, YU J H. Nano Res., 2022:DOI:10.1007/S12274-022-4829-x.

    104. [104]

      CHENG C G, XING M, WU Q L. J. Alloys Compd., 2019, 790:221-227.

    105. [105]

      MA Y J, XU G H, WEI F D, CEN Y, MA Y S, SONG Y Y, XU X M, SHI M L, MUHAMMAD S, HU Q. J. Mater. Chem. C, 2017, 5(33):8566-8571.

  • 加载中
    1. [1]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    2. [2]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    5. [5]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    6. [6]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    9. [9]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    12. [12]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    13. [13]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    14. [14]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    15. [15]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    16. [16]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    17. [17]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    18. [18]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

Metrics
  • PDF Downloads(54)
  • Abstract views(1410)
  • HTML views(297)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return