Citation: LIANG Di-Si,  LIANG Wei-Xin,  ZHOU Qi-Dong,  YANG Xi,  WU Rui. Evaluation of Release of Nano Silver from Polyethylene Antibacterial Food Packaging Materials via Single Particle Inductively Coupled Plasma Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(10): 1511-1519. doi: 10.19756/j.issn.0253-3820.221303 shu

Evaluation of Release of Nano Silver from Polyethylene Antibacterial Food Packaging Materials via Single Particle Inductively Coupled Plasma Mass Spectrometry

  • Corresponding author: YANG Xi,  WU Rui, 
  • Received Date: 21 June 2022
    Revised Date: 26 August 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.21777150) and the Key Research Fields Program of Guangdong Province, China (No.2020B1111350002).

  • The release of silver nanoparticles (AgNPs) in four kinds of polyethylene antibacterial food packaging materials were evaluated via single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS). The iterative algorithm was used to distinguish the signals produced by nano-silver signal and ionic silver (Ag+) in samples, and the effects of food simulants (ultrapure water, ethanol (10%) and acetic acid (3%)), temperature and storage time on the migration of AgNPs and Ag+were investigated. The results showed that the contents of total silver in the four kinds of antibacterial food packaging materials were 1.53-125 μg/g, the release of Ag+ and AgNPs was found in the four polyethylene food packaging materials, and low temperature conditions could reduce the migration of silver. Acidic media and media with high organic solvent were conducive to the release of Ag+ but had no significant effect on AgNPs, and the release of AgNPs accounted for 0.3%-6.1% of total silver, mainly distributed below 50 nm. This approach provided a method for accurately evaluating the migration of nanoparticles in food packaging materials.
  • 加载中
    1. [1]

      FRANCI G, FALANGA A, GALDIERO S, PALOMBA L, RAI M, MORELLI G, GALDIERO M.Molecules, 2015, 20(5):8856-8874.

    2. [2]

      KEDZIORA A, SPERUDA M, KRZYZEWSKA E, RYBKA J, LUKOWIAK A, BUGLA-PLOSKONSKA G. Int. J. Mol. Sci., 2018, 19(2):444.

    3. [3]

      MORAIS L O, MACEDO E V, GRANJEIRO J M, DELGADO I F. Crit. Rev. Food. Sci. Nutr., 2020, 60(18):3083-3102.

    4. [4]

      BUMBUDSANPHAROKE N, KO S. J. Food Sci., 2015, 80(5):R910-R923.

    5. [5]

      TRBOJEVICH R A, KHARE S, LIM J H, WATANABE F, GOKULAN K, KROHMALY K, WILLIAMS K. Food Chem. Toxicol., 2020, 145:111728.

    6. [6]

      FERNANDEZ A, PICOUET P, LLORET E. Int. J. Food Microbiol., 2010, 142(1-2):222-228.

    7. [7]

      CUSHEN M, KERRY J, MORRIS M, CRUZ-ROMERO M, CUMMINS E. J. Agric. Food Chem., 2014, 62(6):1403-1411.

    8. [8]

      MORAIS L D O, MACEDO E V, GRANJEIRO J M, DELGADO I F. Crit. Rev. Food Sci. Nutr., 2020, 60(18):3083-3102.

    9. [9]

      ASHARANI P V, LOW K M G, HANDE M P, VALIYAVEETTIL S. ACS Nano, 2009, 3(2):279-290.

    10. [10]

      YANG W, SHEN C, JI Q, AN H, WANG J, LIU Q, ZHANG Z. Nanotechnology, 2009, 20(8):85102.

    11. [11]

    12. [12]

      SU Q Z, LIN Q B, CHEN C F, WU Y M, WU L B, CHEN X Q, WANG Z W. Food Addit. Contam., Part A, 2015, 32(9):1561-1566.

    13. [13]

      BOTT J, STÖRMER A, FRANZ R. Food Addit. Contam., Part A, 2014, 31(10):1769-1782.

    14. [14]

      HANNON J C, KERRY J P, CRUZ-ROMERO M, AZLIN-HASIM S, MORRIS M, CUMMINS E. Food Addit. Contam., Part A, 2016, 33(1):167-178.

    15. [15]

      GALLOCCHIO F, CIBIN V, BIANCOTTO G, ROCCATO A, MUZZOLON O, CARMEN L, SIMONE B, MANODORI L, FABRIZI A, PATUZZI I, RICCI A. Food Addit. Contam., Part A, 2016, 33(6):1063-1071.

    16. [16]

      ARTIAGA G, RAMOS K, RAMOS L, CÁMARA C, GÓMEZ-GÓMEZ M. Food Chem., 2015, 166:76-85.

    17. [17]

      ADDO N S, NORRIS S, GOODWIN D J, BREFFKE J, SCOTT K, SUNG L, THOMAS T A, NOONAN G O. Food Addit. Contam., Part A, 2018, 35(11):2279-2290.

    18. [18]

      YU S J, YIN Y G, LIU J F. Environ. Sci. Process Impacts, 2013, 15(1):78-92.

    19. [19]

      RAMOS K, GÓMEZ-GÓMEZ M M, CÁMARA C, RAMOS L. Talanta, 2016, 151:83-90.

    20. [20]

    21. [21]

    22. [22]

    23. [23]

      ADDO N S, THOMAS T A, BEGLEY T H, NOONAN G O. Food Addit. Contam., Part A, 2015, 32(6):1003-1011.

    24. [24]

      LEE S, BI X, REED R B, RANVILLE J F, HERCKES P, WESTERHOFF P. Environ. Sci. Technol., 2014, 48(17):10291-10300.

    25. [25]

      ISO TS 19590-2017. Nanotechnologies-size Distribution and Concentration of Inorganic Nanoparticles in Aqueous Media via Single Particle Inductively Coupled Plasma Mass Spectrometry. International Organization for Standardization.

    26. [26]

      MACKEVICA A, OLSSON M E, HANSEN S F. J. Nanopart. Res., 2016, 18(1):1-11.

    27. [27]

    28. [28]

  • 加载中
    1. [1]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    2. [2]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    3. [3]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    4. [4]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    5. [5]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    9. [9]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    13. [13]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    14. [14]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    15. [15]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    16. [16]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    17. [17]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

Metrics
  • PDF Downloads(6)
  • Abstract views(428)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return