Citation: YANG Qi,  LI Ken-Ken,  WEI Pei-Yuan,  NIU Zi-Jun,  WANG Wen-Wen,  LIU Li,  WANG Song-Lei. Sensitive Detection of Clenbuterol by Electrochemical Sensor Based on N-doped Cobalt Metal Organic Framework Modified Electrode[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 559-569. doi: 10.19756/j.issn.0253-3820.221297 shu

Sensitive Detection of Clenbuterol by Electrochemical Sensor Based on N-doped Cobalt Metal Organic Framework Modified Electrode

  • Corresponding author: WANG Song-Lei, wangsonglei163@126.com
  • Received Date: 18 June 2022
    Revised Date: 1 March 2023

    Fund Project: Supported by the National Natural Science Foundation of China (No. 31660484) and the Project of Ningxia Excellent Youth Science Foundation (No. 2022AAC05022).

  • N-doped cobalt metal organic framework (N-Co-MOF) was synthesized by solvothermal method using trimesic acid as ligand and Co2+ and polyvinyl pyrrolidone (PVP) as central metal ions and nitrogen source. The morphology and composition of the materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The electrochemical sensor for detection of clenbuterol (CLB) was constructed on glassy carbon electrode (GCE) modified with N-Co-MOF. The cyclic voltammetry (CV) characterization results showed that the N-Co-MOF could provide more electrochemical active sites and significantly improve the electron transfer ability, and had good electrocatalytic oxidation activity for CLB. The linear range of the sensor for CLB was 0.01-29.5 μmol/L, and the detection limit (3σ) was 4.6 nmol/L. The sensor had excellent anti-interference performance, good reproducibility and stability, and had good accuracy in detection of CLB in actual meat samples, with recoveries of 98.5%-102.9%.
  • 加载中
    1. [1]

      MA Z, WANG Q, GAO N, LI H. Microchem. J., 2020, 157:104911.

    2. [2]

      STELLA R, BOVO D, MASTRORILLI E, MANUALI E, PEZZOLATO M, BOZZETTA E, LEGA F, ANGELETTI R, BIANCOTTO G. Food Chem., 2021, 353:129366.

    3. [3]

      LAI Y, BAI J, SHI X H, ZENG Y, XIAN Y, HOU J, JIN L. Talanta, 2013, 107:176-182.

    4. [4]

      LUST E B, BARTHOLD C, MALESKER M A, WICHMAN T O. J. Emergency Med., 2011, 40(2):198-207.

    5. [5]

    6. [6]

      POSYNIAK A, ZMUDZKI J, NIEDZIELSKA J. Anal. Chim. Acta, 2003, 483(1-2):61-67.

    7. [7]

      VELASCO-BEJARANO B, GÓMEZ-TAGLE A, NOGUEZ-CÓRDOVA M O, ZAMBRANO-ZARAGOZA M L, MIRANDAMOLINA A, BAUTISTA J, RODRÍGUEZ L, VELASCO-CARRILLO R. Food Chem., 2022, 370:131261.

    8. [8]

      LI G, FU Y, HAN X, LI X, LI C. J. Chromatogr. A, 2016, 1456:242-248.

    9. [9]

      ZHOU J, XU X, WANG Y. J. Chromatogr. B, 2007, 848(2):226-231.

    10. [10]

      ZHAO C, JIN G P, CHEN L L, LI Y, YU B. Food Chem., 2011, 129(2):595-600.

    11. [11]

      REN X, ZHANG F, CHEN F, YANG T. Food Agric. Immunol., 2009, 20(4):333-344.

    12. [12]

      LIU B, YAN H, QIAO F, GENG Y. J. Chromatogr. B, 2011, 879(1):90-94.

    13. [13]

      YE D, WU S, XU J, JIANG R, ZHU F, OUYANG G. J. Chromatogr. Sci., 2015, 54(2):112-118.

    14. [14]

      FAN L Y, CHEN Q, ZHANG W, CAO C X. Anal. Methods, 2013, 5(11):2848-2853.

    15. [15]

      YANG X, FENG B, YANG P, DING Y, CHEN Y, FEI J. Food Chem., 2014, 145:619-624.

    16. [16]

      BAI W, HUANG H, LI Y, ZHANG H, LIANG B, GUO R, DU L, ZHANG Z. Electrochim. Acta, 2014, 117:322-328.

    17. [17]

      WANG H, ZHANG Y, LI H, DU B, MA H, WU D, WEI Q. Biosens. Bioelectron., 2013, 49:14-19.

    18. [18]

      ZHANG F, ZHANG J, MA J, ZHAO X, LI Y, LI R. J. Colloid Interface Sci., 2021, 593:32-40.

    19. [19]

      NIRUMAND L, FARHADI S, ZABARDASTI A, KHATAEE A. Ultrason. Sonochem., 2018, 42:647-658.

    20. [20]

      ZHANG H, LI J, LI Z, SONG Y, ZHU S, WANG J, SUN Y, ZHANG X, LIN B. J. Phys. Chem. Solids, 2022, 160:110336.

    21. [21]

      MA Z, WU D, HAN X, WANG H, ZHANG L, GAO Z, XU F, JIANG K. J. CO2 Util., 2019, 32:251-258.

    22. [22]

      RAZAVI S A A, MASOOMI M Y, MORSALI A. Ultrason. Sonochem., 2017, 37:502-508.

    23. [23]

      DARABI R, SHABANI-NOOSHABADI M, KARIMI-MALEH H, GHOLAMI A. Food Chem., 2022, 368:130811.

    24. [24]

      XIE Y Q, ZONG S W, LU L, ZHANG K L. Polyhedron, 2022, 226:116095.

    25. [25]

      DLAMINI Z W, VALLABHAPURAPU S, WU S, MAHULE T S, SRIVIVASAN A, VALLABHAPURAPU V S. Solid State Commun., 2022, 345:114677.

    26. [26]

      ARUL P, JOHN S A. J. Electroanal. Chem., 2018, 829:168-176.

    27. [27]

      CHEN S, WANG C, ZHANG M, ZHANG W, QI J, SUN X, WANG L, LI J. J. Hazard. Mater., 2020, 390:122157.

    28. [28]

    29. [29]

      HAO J, WU W, WANG Q, YAN D, LIU G, PENG S. J. Mater. Chem. A, 2020, 8(15):7192-7196.

    30. [30]

      LV D, SU S, ZHANG S, CAI D. J. Alloys Compd., 2022, 912:165143.

    31. [31]

      HUANG W, CHEN Y, WU L, LONG M, LIN Z, SU Q, ZHENG F, WU S, LI H, YU G. Talanta, 2022, 247:123596.

    32. [32]

      XIE Y, FAN L, LIU W, ZHANG Q, HUANG G. Particuology, 2023, 72:134-144.

    33. [33]

      PENG G, GAO F, ZOU J, WANG X, GAO Y, ZHOU H, LIU S, LI M, LU L. J. Electroanal. Chem., 2022, 918:116462.

    34. [34]

      YAN Q, SUN R M, WANG L P, FENG J J, ZHANG L, WANG A J. J. Colloid Interface Sci., 2021, 603:559-571.

    35. [35]

      ASIF M, AZIZ A, WANG H, WANG Z, WANG W, AJMAL M, XIAO F, CHEN X, LIU H. Microchim. Acta, 2019, 186(2):61.

    36. [36]

      SLATTERY S J, BLAHO J K, LEHNES J, GOLDSBY K A. Coord. Chem. Rev., 1998, 174(1):391-416.

    37. [37]

      RICHARDS J A, WHITSON P E, EVANS D H. J. Electroanal. Chem., 1975, 63(3):311-327.

    38. [38]

      ZHANG J W, ZHANG X. J. Alloys Compd., 2020, 842:155934.

    39. [39]

      YOLA M L, ATAR N. Mater. Sci. Eng., C, 2019, 96:669-676.

    40. [40]

      ZHAO C, JIN G P, CHEN L L, LI Y, YU B. Food Chem., 2011, 129(2):595-600.

    41. [41]

      JING H, OUYANG H, LI W, LONG Y. Microchem. J., 2022, 178:107359.

  • 加载中
    1. [1]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    4. [4]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    5. [5]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    6. [6]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    7. [7]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    10. [10]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    13. [13]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    14. [14]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    17. [17]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    18. [18]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    19. [19]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    20. [20]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

Metrics
  • PDF Downloads(10)
  • Abstract views(971)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return