Citation: FAN Bo,  LIU Lan,  WU Qian,  ZHENG Zi-Liang,  XING Yang,  ZHANG Juan,  ZHANG Rui-Ping. Biomineralization-inspired Synthesis of Lactoferrin-mediated Copper Sulfide Nanoparticle and Its Photothermal Ablation for Tumor Therapy[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 239-249. doi: 10.19756/j.issn.0253-3820.221293 shu

Biomineralization-inspired Synthesis of Lactoferrin-mediated Copper Sulfide Nanoparticle and Its Photothermal Ablation for Tumor Therapy

  • Corresponding author: ZHANG Rui-Ping, zrp_7142@sxmu.edu.cn
  • Received Date: 4 June 2022
    Revised Date: 14 October 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 82211001138, 82071987, 81771907), the Youth Scientific Research Project of Shanxi Province (No. 20210302124703) and the Foundation for PhD of Shanxi Medical University (No 03201620).

  • Photothermal agents with strong light absorption in the second near-infrared (NIR-II) region are strongly desired for successful photothermal therapy (PTT). In this work, the lactoferrin-mediated copper sulfide nanoparticles (CuS@Lf NPs) were successfully synthesized by biomineralization strategy. The uniform CuS@Lf NPs showed strong NIR-Ⅱ absorbance in the wavelength range of 1000-1300 nm and possessed high photothermal conversion efficiency, which could be applied in antitumor therapy under 1064 nm laser irradiation. Moreover, lactoferrin (Lf) not only improved the solubility of CuS nanoparticles, but also enhanced their biocompatibility and tumor targeting. Meanwhile, the antioxidant effect of Lf could eliminate oxidative damage after photothermal therapy and reduce tumor recurrence. Herein, the U87 glioma model with high expression of low density lipoprotein receptor associated protein (LRP-1) was used to study the antitumor effects of CuS@Lf NPs in vivo and in vitro. As a result, CuS@Lf NPs displayed effective photothermal tumor ablation, which provided a foundation for NIR-Ⅱ based photothermal therapy in antitumor application.
  • 加载中
    1. [1]

      CAO Y, WU T, ZHANG K, MENG X, DAI W, WANG D, DONG H, ZHANG X. ACS Nano, 2019, 13(2):1499-1510.

    2. [2]

      WANG F, ZHU J, WANG Y, LI J. Nanomaterials, 2022, 12(10):1656.

    3. [3]

      CAI H, DAI X, GUO X, ZHANG L, CAO K, YAN F, JI B, LIU Y. Acta Biomater., 2021, 127:276-286.

    4. [4]

      ZHOU T, XIE S, ZHOU C, CHEN Y, LI H, LIU P, JIANG R, HANG L, JIANG G. ACS Appl. Bio Mater., 2022, 5(8):3841-3849.

    5. [5]

      JIANG A, LIU Y, MA L, MAO F, LIU L, ZHAI X, ZHOU J. ACS Appl. Mater. Interfaces, 2019, 11(7):6820-6828.

    6. [6]

      LIU X, SU Q, SONG H, SHI X, ZHANG Y, ZHANG C, HUANG P, DONG A, KONG D, WANG W. Biomaterials, 2021, 275:120921.

    7. [7]

      XIE X, GAO W, HAO J, WU J, CAI X, ZHENG Y. J. Nanobiotechnol., 2021, 19(1):126.

    8. [8]

      ROSA L, CUTONE A, LEPANTO M, PAESANO R, VALENTI P. Int. J. Mol. Sci., 2017, 18(9):1985.

    9. [9]

    10. [10]

      KANWAR J, ROY K, PATEL Y, ZHOU S F, SINGH M, SINGH D, NASIR M, SEHGAL R, SEHGAL A, SINGH R, GARG S, KANWAR R. Molecules, 2015, 20(6):9703-9731.

    11. [11]

      KIM S E, CHOI S, HONG J Y, SHIM K S, KIM T H, PARK K, LEE S H. Nanomaterials, 2019, 10(1):50.

    12. [12]

      ELZOGHBY A O, ABDELMONEEM M A, HASSANIN I A, ABD ELWAKIL M M, ELNAGGAR M A, MOKHTAR S, FANG J Y, ELKHODAIRY K A. Biomaterials, 2020, 263:120355.

    13. [13]

      CHEN Q, ZHENG Z, HE X, RONG S, QIN Y, PENG X, ZHANG R. J. Mater. Chem. B, 2020, 8(41):9492-9501.

    14. [14]

    15. [15]

      WANG Z, HUANG P, JACOBSON O, WANG Z, LIU Y, LIN L, LIN J, LU N, ZHANG H, TIAN R, NIU G, LIU G, CHEN X. ACS Nano, 2016, 10(3):3453-3460.

    16. [16]

    17. [17]

      GAO D, SHENG Z, LIU Y, HU D, ZHANG J, ZHANG X, ZHENG H, YUAN Z. Adv. Healthcare Mater., 2017, 6(1):1601094.

    18. [18]

      CHEN J L, ZHANG H, HUANG X Q, WAN H Y, LI J, FAN X X, LUO K Q, WANG J, ZHU X M, WANG J. Nano-Micro Lett., 2019, 11(1):93.

    19. [19]

      DING X, LIOW C H, ZHANG M, HUANG R, LI C, SHEN H, LIU M, ZOU Y, GAO N, ZHANG Z, LI Y, WANG Q, LI S, JIANG J. J. Am. Chem. Soc., 2014, 136(44):15684-15693.

    20. [20]

  • 加载中
    1. [1]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    2. [2]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    3. [3]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    4. [4]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    5. [5]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    6. [6]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    7. [7]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    8. [8]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    9. [9]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    12. [12]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    13. [13]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    14. [14]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    18. [18]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    19. [19]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    20. [20]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

Metrics
  • PDF Downloads(17)
  • Abstract views(2241)
  • HTML views(212)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return