Citation: NIE Jia,  XU Tong,  LIU Qian,  SUN Xu-Ping. Synthesis of Fluorescent Carbon Nitride Dots as Probe for Detection of Copper Ion[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(10): 1502-1510. doi: 10.19756/j.issn.0253-3820.221270 shu

Synthesis of Fluorescent Carbon Nitride Dots as Probe for Detection of Copper Ion

  • Corresponding author: SUN Xu-Ping, xpsun@uestc.edu.cn
  • Received Date: 29 May 2022
    Revised Date: 25 June 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.22072015) and the Key Research Program from Science and Technology Department of Sichuan Province, China (No.2020YFG0091).

  • Fluorescent probes have attracted a lot of attention because of their high accuracy and rapid visualization of heavy metals. Carbon nitride dots show potential applications in ion detection, due to their metal-free, water solubility, low toxicity, ease of preparation and high quantum yield. In this work, a carbon nitride dot fluorescent probe was prepared using ethanediamine and CCl4, and Cu2+ could burst the fluorescence of the probe, based on which a Cu2+ fluorescence detection method was established. The linear detection range was 2.0-10.0 μmol/L, and the detection limit (S/N=3) was as low as 0.058 μmol/L. When this probe was used for the determination of Cu2+ in tap water, lake and wastewater, the recoveries were in the range of 91.5%-105.3%, indicating the practicality of this method. The fluorescence test paper constructed based on carbon nitride dots with a detection limit as low as 0.5 μmol/L provided an alternative solution for the real-time detection of Cu2+ in the field.
  • 加载中
    1. [1]

      WANG Z Q, WANG M, WU G H, WU D Y, WU A G. Dalton Trans., 2014, 43(22):8461-8468.

    2. [2]

      MICHELLE L T, DENNIS J T. J. Biol. Chem., 2009, 284(2):717-721.

    3. [3]

      PROHASKA J R, GYBINA A A. J. Nutr., 2004, 134(5):1003-1006.

    4. [4]

      TAKI M, IYOSHI S, OJIDA A, HAMACHI I, YAMAMOTO Y. J. Am. Chem. Soc., 2010, 132(17):5938-5939.

    5. [5]

    6. [6]

      HUANG R J, ZHUANG Z X, TAI Y, HUANG R F, WANG X R, LEE F S C. Talanta, 2006, 68(3):728-734.

    7. [7]

      ALLIBONE J, FATEMIAN E, WALKER P J. J. Anal. At. Spectrom., 1999, 14(2):235-239.

    8. [8]

      ANTHEMIDIS A N, ZACHARIADIS G A, MICHOS C E, STRATIS J A. Anal. Bioanal. Chem., 2004, 379(5):764-769.

    9. [9]

      SANGHAVI B J, VARHUE W, CHAVZE J L, CHOU C F, SWAMI N S. Anal. Chem., 2014, 86(9):4120-4125.

    10. [10]

      FILHO N L D, CAEMO D R D. Talanta, 2006, 68(3):919-927.

    11. [11]

      QUANG D T, KIM J S. Chem. Rev., 2010, 110(10):6280-63010.

    12. [12]

      ZHANG F J, ZHOU Y, YOON J Y, KIM J S. Chem. Soc. Rev., 2011, 40(7):3416-3429.

    13. [13]

      CARTER K P, YOUNG A M, PALMER A E. Chem. Rev., 2014, 114(8):4564-4601.

    14. [14]

      OSEGHE E O, AKPOTU S O, MOMBESHORA E T, OLADIPO A O, OMBAKA L M, MARIA B B, IDRIS A O, MAMBA G, NDLWANA L, AYANDA O S, OFOMAJA A E, NYAMORI V O, FELENI U, NKAMBULE T T I, MSAGATI T A M, MAMBA B B, BAHNEMANN D W. J. Mol. Liq., 2021, 344:117820.

    15. [15]

      SUI Y, LIU J H, ZHANG Y W, TIAN X K, CHEN W. Nanoscale, 2013, 5(19):9150-9155.

    16. [16]

      YANG P J, OU H H, FANG Y X, WANG X C. Angew. Chem., Int. Ed., 2017, 56(14):3992-3996.

    17. [17]

      SAVATEEV A, ANTONIETTII M. ChemCatChem, 2019, 11(24):6166-6176.

    18. [18]

      LIN L S, CONG Z X, LI J, KE K M, GUO S S, YANG H H, CHEN G N. J. Mater. Chem. B, 2014, 2(8):1031-1037.

    19. [19]

      TANG Y R, SONG H J, SU Y Y, LV Y. Anal. Chem., 2013, 85(24):11876-11884.

    20. [20]

      ZHAO P, JIN B, ZHANG Q C, PENG R F. Langmuir, 2021, 37(5):1760-1767.

    21. [21]

      LIU H J, WANG X Y, WANG H, NIE R R. J. Mater. Chem. B, 2019, 7(36):5432-5448.

    22. [22]

      ACHADU O J, REVAPRASADU N. Microchim. Acta, 2019, 186(2):87.

    23. [23]

      ACHADU O J, REVAPRASADU N. Microchim. Acta, 2018, 185(10):461.

    24. [24]

      PATIR K, GOGOI S K. ACS Sustainable Chem. Eng., 2018, 6(2):1732-1743.

    25. [25]

      LI Y H, CAI J B, LIU F J, YU H W, LIN F, YANG H, LIN Y, LI S. Microchim. Acta, 2018, 185(2):134.

    26. [26]

      LI B, ZHANG J, LUO Z Y, DUAN X P, HUANG W Q, HU W Y, PAN A L, LIAO L, JIANG L, HUANG G F. Sci. China Mater., 2021, 64(12):3037-3050.

    27. [27]

      LIU S, TIAN J Q, WANG L, LUO Y L, ZHAI J F, SUN X P. J. Mater. Chem., 2011, 21(32):11726-11729.

    28. [28]

      LAKOWICZ J R. Principle of Fluorescence Spectroscopy, Third Edition, 1999.

    29. [29]

      GUO L, GE J C, LIU W M, NIU G L, JIA Q Y, WANG H, WANG P F. Nanoscale, 2016, 8(2):729-734.

    30. [30]

      ZHOU Y Q, KANDEL N B, BARTOLI M, SERAFIM L F, ElMATWALLY A E, FALKENBERG S M, PAREDES X E, NELSON C J, SMITH N, PADOVANO E, ZHANG W, MINTZ K J, FERREIRA B C L B, CILINGIR E K, CHEN J Y, SHAH S K, PRABHAKAR R, TAGLIAFERRO A, WANG C Y, LEBLANC R M. Carbon, 2022, 193:1-16.

    31. [31]

      ZHENG X C, LIU W J, GAI Q X, TIAN Z S, REN S T. ChemistrySelect, 2019, 4(8):2392-2397.

    32. [32]

    33. [33]

      HAN Z, NAN D Y, YANG H, SUN Q Q, PAN S, LIU H, HU X L. Sens. Actuators, B, 2019, 298:126842.

    34. [34]

      XU J, WANG C L, LI H Z, ZHAO W L. RSC Adv., 2020, 10(5):2536-2544.

    35. [35]

      DENG X Y, FENG Y L, HE D S, ZHANG Z, Y LIU D F, CHI R A. Chin. J. Anal. Chem., 2020, 48(10):e20126-e20133.

    36. [36]

      WU Y M, FENG M, HE B, CHEN X Y, ZENG J L, SUN J. Appl. Surf. Sci., 2022, 599:153705.

    37. [37]

      NING G, LI B, LIU J J, XIAO Q, HUANG S. Anal. Bioanal. Chem., 2022, 414(6):2219-2233.

    38. [38]

      SANNI S O, MOUNDZOUNGA T H G,OSEGHE E O, HANEKLAUS N H, VILJOEN E L, BRINK H G. Nanomaterials, 2022, 12(6):958.

    39. [39]

      ZHOU W Y, MO F W, SUN Z S, LUO J B, FAN J Q, ZHU H N, ZHU Z P, HUANG J Q, ZHANG X G. J. Alloys Compd., 2022, 897:162731.

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    10. [10]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    11. [11]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    12. [12]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    13. [13]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    14. [14]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    15. [15]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    18. [18]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    20. [20]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

Metrics
  • PDF Downloads(7)
  • Abstract views(459)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return