Citation: WU Yin,  TIAN Shi-Si,  LI Wen-Jie,  SUN Ling-Hui,  SONG Xi-Lin,  ZHAO Ya-Bin,  LI Zhan-Ping. Personal Identification of Fingerprint Donors Based on Time-of-Flight Secondary Ion Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 570-578. doi: 10.19756/j.issn.0253-3820.221258 shu

Personal Identification of Fingerprint Donors Based on Time-of-Flight Secondary Ion Mass Spectrometry

  • Corresponding author: ZHAO Ya-Bin,  LI Zhan-Ping, 
  • Received Date: 23 May 2022
    Revised Date: 18 November 2022

    Fund Project: Supported by the National Key R&D Program of China (No. 2018YFA0702600) and the General Science and Technology Program of the Ministry of Public Security (No. 2021JSM01).

  • Fingerprints, as one of the most important evidences, contain numerous personal information and are used for individual identification in the field of forensic science. However, in real case scenes, traditional way of comparison and matching with patterns may not be effective, as the detected fingerprints are mostly fuzzy or incomplete. Additionally, the compositions of fingerprint substance are so complicated that it is quite difficult to characterize donors according to some specific compounds. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) can obtain the mass spectra of fingerprint substances and corresponding ion distribution images without destroying the patterns, which provides the possibility of identifying individuals based on fingerprint substances. In this study, the mass spectra of ten fingerprints from 5 volunteers were collected using TOF-SIMS to preliminarily explore the feasibility of identifying individuals based on ion signals of fingerprint substance. Firstly, 98 kinds of TOF-SIMS ion signals representing different fingerprint substances were screened out followed by the process of principal component analysis to reduce the dimension of intensity of ion signals. Afterwards, the newly saved variables after dimension reduction were input into different classifiers to compare the effects. The results showed that the effect of unsupervised hierarchical clustering was quite different from the actual classification, while supervised Fisher discriminant method could correctly discriminate 94% of the individuals and the accuracy of cross-validation also reached 90%. Meanwhile, more ideal results would be achieved when the data was input into the multi-layer perceptron neural network after multiple trainings. The individual classification and prediction models were established via various statistical analysis methods, which provided a new channel for improving the evidence value of fingerprints and laid the research foundation for further exploration of employing fingerprint substances to identify individuals.
  • 加载中
    1. [1]

      COSTA C, WEBB R, PALITSIN V, ISMAIL M, DE PUIT M, ATKINSON S, BAILEY M J. Clin. Chem., 2017, 63(11):1745-1752.

    2. [2]

      CZERWINSKA J, JANG M, COSTA C, PARKIN M C, GEORGE C, KICMAN A T, BAILEY M J, DARGAN P I, ABBATE V. Analyst, 2020, 145(8):3038-3048.

    3. [3]

      FORBES T P, SISCO E. Anal. Chem., 2014, 86(15):7788-7797.

    4. [4]

      BRADSHAW R, WOLSTENHOLME R, BLACKLEDGE R D, CLENCH M R, FERGUSON L S, FRANCESE S. Rapid Commun. Mass Spectrom., 2011, 25(3):415-422.

    5. [5]

      BRADSHAW R, WOLSTENHOLME R, FERGUSON L S, SAMMON C, MADER K, CLAUDE E, BLACKLEDGE R D, CLENCH M R, FRANCESE S. Analyst, 2013, 138(9):2546-2557.

    6. [6]

      ISMAIL M, STEVENSON D, COSTA C, WEBB R, DE PUIT M, BAILEY M. Clin. Chem., 2018, 64(6):909-917.

    7. [7]

      KUWAYAMA K, TSUJIKAWA K, MIYAGUCHI H, KANAMORI T, IWATA Y T, INOUE H. Anal. Bioanal. Chem., 2013, 405(12):3945-3952.

    8. [8]

      HEMMILA A, MCGILL J, RITTER D. J. Forensic Sci., 2008, 53(2):369-376.

    9. [9]

      ANTOINE K M, MORTAZAVI S, MILLER A D, MILLER L M. J. Forensic Sci., 2010, 55(2):513-518.

    10. [10]

      ASANO K G, BAYNE C K, HORSMAN K M, BUCHANAN M V. J. Forensic Sci., 2002, 47(4):805-807.

    11. [11]

      FERGUSON L S, WULFERT F, WOLSTENHOLME R, FONVILLE J M, CLENCH M R, CAROLAN V A, FRANCESE S. Analyst, 2012, 137(20):4686-4692.

    12. [12]

      WOLFBEIS O. Angew. Chem. Int. Ed., 2009, 48(13):2268-2269.

    13. [13]

      WANG J, WEI T, LI X, ZHANG B, WANG J, HUANG C, YUAN Q. Angew. Chem. Int. Ed., 2014, 53(6):1616-1620.

    14. [14]

      CROXTON R S, BARON M G, BUTLER D, KENT T, SEARS V G. J. Forensic Sci., 2006, 51(6):1329-1333.

    15. [15]

      GIROD A, WEYERMANN C. Forensic Sci. Int., 2014, 238:68-82.

    16. [16]

      VAN HELMOND W, DE PUIT M. Methods Mol. Biol., 2019, 2030:439-450.

    17. [17]

      CROXTON R S, BARON M G, BUTLER D, KENT T, SEARS V G. Forensic Sci. Int., 2010, 199(1-3):93-102.

    18. [18]

      MICHALSKI S, SHALER R, DORMAN F L. J. Forensic Sci., 2013, 58:S215-S220.

    19. [19]

      VAN DAM A, VAN BEEK F T, AALDERS M C G, VAN LEEUWEN T G, LAMBRECHTS S A G. Sci. Justice, 2016, 56(2):143-154.

    20. [20]

      IFA D R, MANICKE N E, DILL A L, COOKS R G. Science, 2008, 321(5890):805.

    21. [21]

      BAILEY M J, BRADSHAW R, FRANCESE S, SALTER T L, COSTA C, ISMAIL M, P. WEBB R, BOSMAN I, WOLFF K, DE PUIT M. Analyst, 2015, 140(18):6254-6259.

    22. [22]

      SUN Q, LUO Y, SUN N, ZHANG Q, WANG Y, YANG X. Forensic Sci. Int., 2022, 336:111321.

    23. [23]

      FRANCESE S, BRADSHAW R, FERGUSON L S, WOLSTENHOLME R, CLENCH M R, BLEAY S. Analyst, 2013, 138(15):4215-4228.

    24. [24]

      LAUZON N, DUFRESNE M, CHAUHAN V, CHAURAND P. J. Am. Soc. Mass Spectrom., 2015, 26(6):878-886.

    25. [25]

    26. [26]

      CAI L, XIA M C, WANG Z, ZHAO Y B, LI Z, ZHANG S, ZHANG X. Anal. Chem., 2017, 89(16):8372-8376.

    27. [27]

    28. [28]

      SZYNKOWSKAM I, CZERSKI K, ROGOWSKI J, PARYJCZAK T, PARCZEWSKI A. Forensic Sci. Int., 2009, 184(1-3):E24-E26.

    29. [29]

      SZYNKOWSKA-JÓŹWIK M I, MAĆKIEWICZ E, ROGOWSKI J, GAJEK M, PAWLACZYK A, DE PUIT M, PARCZEWSKI A. Materials, 2021, 14(21):6243-6253.

    30. [30]

      THANDAUTHAPANI T D, REEVE A J, LONG A S, TURNER I J, SHARP J S. Sci. Justice, 2018, 58(6):405-414.

    31. [31]

      MURAMOTO S, SISCO E. Anal. Chem., 2015, 87(16):8035-8038.

    32. [32]

    33. [33]

      HINDER S J, WATTS J F. Surf. Interface Anal., 2010, 42(6-7):826-829.

    34. [34]

      MCDONNELL L A, HEEREN R M A. Mass Spectrom. Rev., 2007, 26(4):606-643.

    35. [35]

      PEARSON K. Science, 1909, 30(757):23-25.

    36. [36]

      CARRASCO J L, JOVER L. Statist. Med., 2005, 24(24):4021-4034.

    37. [37]

  • 加载中
    1. [1]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    4. [4]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    5. [5]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    6. [6]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    7. [7]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    8. [8]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    9. [9]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    10. [10]

      Tianyang Yu Hao Wei . “Illness Enters through the Mouth”: A Brief Overview of Toxic Chemical Substances in Common Foods. University Chemistry, 2025, 40(7): 225-231. doi: 10.12461/PKU.DXHX202409083

    11. [11]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    12. [12]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    13. [13]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    14. [14]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    15. [15]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    16. [16]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    17. [17]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    18. [18]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    19. [19]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    20. [20]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

Metrics
  • PDF Downloads(9)
  • Abstract views(1799)
  • HTML views(129)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return