Citation: YU Shao-Nan,  REN Ling-Ling,  REN Li-Qun,  BAI Ying-Jie,  LIU Gui-Feng,  ZHANG Hua,  WANG Zhen-Xin. Upconversion Nanoparticles/Gold Nanorods-based Fluorescence Resonance Energy Transfer Immunoassay for Detection of Carcinoembryonic Antigen[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(9): 1299-1307. doi: 10.19756/j.issn.0253-3820.221249 shu

Upconversion Nanoparticles/Gold Nanorods-based Fluorescence Resonance Energy Transfer Immunoassay for Detection of Carcinoembryonic Antigen

  • Corresponding author: LIU Gui-Feng,  ZHANG Hua, 
  • Received Date: 19 May 2022
    Revised Date: 15 July 2022

    Fund Project: Supported by the Wu Jieping Medical Foundation (Nos.320675019089-40, 320675019089-38) and the National Natural Science Foundation of China (No.61901438).

  • A fluorescence resonance energy transfer (FRET) immunoassay based on upconversion nanoparticles (UCNP) and gold nanorods (GNR) was constructed for sensitive detection of carcinoembryonic antigen (CEA). UCNP was employed as the donor and GNR was employed as the acceptor. The CEA antibody was covalently attached on the surface of UCNP and GNR to form UCNP-cAb and GNR-dAb conjugates, respectively. After introduction of CEA, a "sandwich" complex was formed through the antigen-antibody specific interaction, which resulted in the close proximity of UCNP and GNR to generate FRET. And the fluorescence quenching efficiency was positively correlated with the concentration of CEA. The constructed FRET immunoassay realized the detection of CEA in both buffer solution and human serum samples with a limit of detection (S/N=3) of 0.01 ng/mL, a linear range from 0.01 ng/mL to 100 ng/mL and good selectivity. It was expected that this FRET immunoassay could be further used in clinical applications and provided new methods for early diagnosis, treatment and prognosis monitoring of related cancers.
  • 加载中
    1. [1]

      CHEN W, ZHENG R, BAADE P D, ZHANG S, ZENG H. CA-Cancer J. Clin., 2016, 66:115-132.

    2. [2]

      ALTINTAS Z, TOTHILL I. Sens. Actuators, B, 2013, 188:988-998.

    3. [3]

      SHEN G Y, WANG H, DENG T, SHEN G L, YU R Q. Talanta, 2005, 67:217-220.

    4. [4]

      GRUNNET M, SORENSEN J B. Lung Cancer, 2012, 76:138-143.

    5. [5]

      FERRARI M. Nat. Rev. Cancer, 2005, 5:161-171.

    6. [6]

      DUFFY M J. Clin. Chem., 2001, 4:624-630.

    7. [7]

      HAIDOPOULOS D, KONSTADOULAKIS M M, ANTONAKIS P T, ALEXIOU D G, MANOURAS A M, KATSARAGAKIS S M, ANDROULAKIS G F. Euro. J. Surg. Oncol., 2000, 26:742-746.

    8. [8]

      ZHAO L, XU S, FJAERTOFT G, PAUKSEN K, HAKANSSON L, VENGE P. J. Immunol. Methods, 2004, 293:207-214.

    9. [9]

      THOMSON D M, KRUPEY J, FREEDMAN S O, GOLD P. Proc. Natl. Acad. Sci. U.S.A., 1969, 64:161-167.

    10. [10]

      NIKOOYEH B, SAMIEE S M, FARZAMI M R, ALAVIMAJD H, ZAHEDIRAD M, KALAYI A, SHARIATZADEH N, BOROUMAND N, GOLSHEKAN E, GHOLAMIAN Y, NEYESTANIET T R. J. Clin. Lab. Anal., 2017, 31(6):e22117.

    11. [11]

      LIN J H, YAN F, HU X Y, JU H X. J. Immunol. Methods, 2004, 291:165-174.

    12. [12]

      LI J J, CHEN X H, WENG G J, ZHU J, ZHAO J W. Mater. Today Commun., 2020, 25:101373.

    13. [13]

      OLOFSSON E, ZENCI V, ATHLIN S. J. Clin. Microbiol., 2019, 57:953.

    14. [14]

      WANG Y J, WEI Z K, LUO X D, WAN Q, QIU R L, WANG S Z. Talanta, 2019, 195:33-39.

    15. [15]

      WANG L, LI L, CAO D. Sens. Actuators, B, 2017, 239:1307-1317.

    16. [16]

      HU Q, DUAN C, WU J J, SU D D, ZENG L T, SHENG R L. Anal. Chem., 2018, 90(14):8686-8691.

    17. [17]

      GONG Y, ZHENG Y M, JIN B R, YOU M L, WANG J Y, LI X J, LIN M, XU F, LI F. Talanta, 2019, 201:126-133.

    18. [18]

      JIN B R, YANG Y X, HE R Y, PARK Y, LEE A, BAI D, LI F, LU T J, XU F, LIN M. Sens. Actuators, B, 2018, 276:48-56.

    19. [19]

      HE W H, YOU M L, LI Z D, CAO L, XU F, LI F, LI A. Sens. Actuators, B, 2021, 334:129673.

    20. [20]

      LIU L, ZHANG H, WANG Z X, SONG D Q. Biosens. Bioelectron., 2019, 141:111403.

    21. [21]

      SHANG Y T, XIANG X R, YE Q H, WU Q P, ZHANG J M, LIN J M. TrAC, Trend Anal. Chem., 2022, 147:116509.

    22. [22]

      WU Y M, CHAN S Y, XU J H, LIU X G. Chem.-Asian J., 2021, 16(18):2596-2609.

    23. [23]

      ANSARI A A, PARCHUR A K, THORAT N D, CHEN G Y. Coordin. Chem. Rev., 2021, 440:213971.

    24. [24]

      MO J, SHEN L, XU Q, ZENG J, SHA J, HU T, BI K, CHEN Y. Nanomaterials, 2019, 9:1700.

    25. [25]

      DONG H, SUN L D, YAN C H. Front. Chem., 2021, 8:619377.

    26. [26]

      MOON H, KUMAR D, KIM H, SIM C, CHANG J H, KIM J M, KIM H, LIM D K. ACS Nano, 2015, 9(3):2711-2719.

    27. [27]

      RAO W Y, LI Q, WANG Y Z, LI T, WU L J. ACS Nano, 2015, 9(3):2783-2791.

    28. [28]

      NIKOOBAKHT B, EL-SAYED M A. Chem. Mater., 2003, 15(10):1957-1962.

    29. [29]

    30. [30]

      ZHENG J P, CHENG X Z, ZHANG H, BAI X P, AI R Q, SHAO L, WANG J F. Chem. Rev., 2021, 121(21):13342-13453.

    31. [31]

      YUAN F, CHEN H Q, XU J, ZHANG Y Y, WU Y, WANG L. Chem.-Eur. J, 2014, 20(10):2888-2894.

    32. [32]

      LI J J, CHEN X H, WENG G J, ZHU J, ZHAO J W. Mater. Today Commun., 2020, 25:101373.

    33. [33]

      WANG Y J, WEI Z K, LUO X D, WAN Q, QIU R L, WANG S Z. Talanta, 2019, 195:33-39.

    34. [34]

      WU Y W, CHEN X L, LUO X G, YANG M, HOU C J, HUO D Q. Anal. Chim. Acta, 2021, 1183:339000.

    35. [35]

      XIANG W W, ZHANG Z J, WENG W Q, WU B D, CHENG J, SHI L, SUN H W, GAO L, SHI K Q. Anal. Chim. Acta, 2020, 1127:156-162.

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    3. [3]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    4. [4]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    8. [8]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    9. [9]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    10. [10]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    11. [11]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    12. [12]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    16. [16]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    17. [17]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(10)
  • Abstract views(435)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return