Citation: XU Yong-Hua,  WANG Na,  LIU Jin-Ming. Research on Rapid Determination of Lignocellulosic Contents in Corn Stover Using Near Infrared Spectroscopy Based on Spectral Intervals Selection[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(10): 1587-1596. doi: 10.19756/j.issn.0253-3820.221239 shu

Research on Rapid Determination of Lignocellulosic Contents in Corn Stover Using Near Infrared Spectroscopy Based on Spectral Intervals Selection

  • Corresponding author: LIU Jin-Ming, jinmingliu2008@126.com
  • Received Date: 15 May 2022
    Revised Date: 2 July 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.52076034), the Heilongjiang Province Science and Technology Plan, Provincial Academy Science and Technology Cooperation Project (No.YS20B01) and the Scientific Research Foundation for Talent of Heilongjiang Bayi Agricultural University (No.XDB202006).

  • The contents of lignocellulosic components (including cellulose, hemicellulose and lignin) have an important influence on the methane yield of anaerobic digestion (AD) with corn stover (CS) as feedstocks in biogas industry. Aiming at the time-consuming and high-cost issues of traditional chemical analytical techniques, the feasibility of near infrared spectroscopy (NIRS) combined with chemometrics methods to measure the contents of lignocellulose in corn stover was analyzed in this work. To improve the detection accuracy and efficiency of NIRS regressive model, the genetic simulated annealing interval support vector machine (GSA-iSVM) was constructed using genetic simulated annealing algorithm (GSA) combined with interval partial least squares (iPLS) and support vector machine (SVM), which was used for synchronous optimization of the NIRS characteristic intervals and SVM parameters. By comparison with the modeling performance of the characteristic spectral intervals selected by backward interval partial least squares and genetic simulated annealing interval partial least squares (GSA-iPLS), it was found that the calibration model for cellulose and lignin established by GSA-iSVM had the best predicted accuracy, and that of hemicellulose established by GSA-iPLS performed best. For the validation set, the determination coefficients of prediction, root mean squared error of prediction and residual predictive deviation of the best calibration models were 0.910, 0.881% and 3.283 for cellulose; 0.990, 0.707% and 10.235 for hemicellulose; and 0.939, 0.249% and 4.270 for lignin, respectively. The results indicated that NIRS coupled with characteristic intervals intelligent selection of GSA could be used as a reliable alternative strategy to measure contents of lignocellulosic components in the pretreated CS in AD process.
  • 加载中
    1. [1]

      CHU X, CHENG Q, XU Y, LUO L, WANG M, ZHENG G, ZHANG H, YI W, LIU X, SUN Y, SUN Y. Bioresource Technol., 2021, 341:125826.

    2. [2]

      YANG G, LI Y, ZHEN F, XU Y, LIU J, LI N, SUN Y, LUO L, WANG M, ZHANG L. Bioresource Technol., 2021, 326:124745.

    3. [3]

      JEONG S Y, LEE E J, BAN S E, LEE J W. Renew. Energ., 2021, 172:1341-1350.

    4. [4]

    5. [5]

      AI N, JIANG Y, OMAR S, WANG J, XIA L, REN J. Molecules, 2022, 27(2):335.

    6. [6]

      SERAFIM C C, GUERRA G L, MIZUBUTI I Y, DE CASTRO F A B, PRADO-CALIXTO O P, GALBEIRO S, PARRA A R P, BUMBIERIS V H, PERTILE S F N, REGO F C D. Semina:Cienc. Agrar., 2021, 42(3):1287-1302.

    7. [7]

      YU Y, ZHANG Q, HUANG J, ZHU J, LIU J. Infrared Phys. Technol., 2021, 116:103785.

    8. [8]

      MEENU M, ZHANG Y, KAMBOJ U, ZHAO S, CAO L, HE P, XU B. Foods, 2022, 11(1):43.

    9. [9]

      ZHANG Y Z, HUANG J P, ZHANG Q L, LIU J W, MENG Y L, YU Y. Appl. Optics, 2022, 61(12):3419-3428.

    10. [10]

      BOIDO E, FARINA L, CARRAU F, COZZOLINO D, DELLACASSA E. Food Chem., 2022, 387:132927.

    11. [11]

      WANG D, XIE L, YANG S X, TIAN F. Sensors, 2018, 18(10):3222.

    12. [12]

      JIN X, CHEN X, SHI C, LI M, GUAN Y, YU C Y, YAMADA T, SACKS E J, PENG J. Bioresource Technol., 2017, 241:603-609.

    13. [13]

      LI L, WANG Y, JIN S, LI M, CHEN Q, NING J, ZHANG Z. Spectrochim. Acta, Part A, 2021, 246:118991.

    14. [14]

      LIU J, JIN S, BAO C, SUN Y, LI W. Bioresource Technol., 2021, 321:124449.

    15. [15]

    16. [16]

      LEARDI R, NORGAARD L. J. Chemom., 2004, 18(11):486-497.

    17. [17]

    18. [18]

      GUAN R, YUAN H, YUAN S, YAN B, ZUO X, CHEN X, LI X. Bioresource Technol., 2022, 349:126615.

    19. [19]

      SUN Y, QU J, LI R, LI W, WANG Z, CHU X. J. Biobased Mater. Bioenergy, 2018, 12(5):432-440.

    20. [20]

      VAN SOEST P J, ROBERTSON J B, LEWIS B A. J. Dairy Sci., 1991, 74(10):3583-3597.

    21. [21]

      CHU X, AWASTHI M K, LIU Y, CHENG Q, QU J, SUN Y. Bioresource Technol., 2021, 320:124174.

    22. [22]

      ZHANG H, HU X, LIU L, WEI J, BIAN X. Spectrochim. Acta, Part A, 2022, 270:120841.

    23. [23]

      XIE S, DING F, CHEN S, WANG X, LI Y, MA K. Spectrochim. Acta, Part A, 2022, 273:120949.

    24. [24]

      MULRENNAN K, MUNIR N, CREEDON L, DONOVAN J, LYONS J G, MCAFEE M. Sensors, 2022, 22(8):2835.

    25. [25]

      SHUKLA S R, SHASHIKALA S, SUJATHA M. J. Near Infrared Spectrosc., 2021, 29(3):168-178.

  • 加载中
    1. [1]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    2. [2]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    5. [5]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    6. [6]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    7. [7]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    8. [8]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    9. [9]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    10. [10]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    11. [11]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    12. [12]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    16. [16]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    17. [17]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    18. [18]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    19. [19]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    20. [20]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

Metrics
  • PDF Downloads(13)
  • Abstract views(529)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return