Citation: ZHANG Han-Xiao,  DAI Xiao-Chun,  ZHOU Ya-Nan,  LYU Xu-Zhen,  GONG Tao,  ZHAO Xu-Hua,  YU Bao-Feng. CRISPR/Cas12a Fluorescence Sensor Based on Molecular Beacon for Amplification Detection of Circular Tumor DNA[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(2): 184-193. doi: 10.19756/j.issn.0253-3820.221203 shu

CRISPR/Cas12a Fluorescence Sensor Based on Molecular Beacon for Amplification Detection of Circular Tumor DNA

  • Corresponding author: ZHAO Xu-Hua,  YU Bao-Feng, 
  • Received Date: 26 April 2022
    Revised Date: 1 December 2022

    Fund Project: Supported by the Natural Science Foundation of Shanxi Province, China (Nos. 202103021224240, 201901D211317, 201901D111190), the Open Fund from Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China (No. KLMEC/SXMU-202011) and the Shanxi “1331 Project” Key Subjects Construction (No. 1331KSC).

  • A CRISPR/Cas12a-based biosensor using molecular beacon (MB) as the reporter was constructed for amplification detection of circular tumor DNA (ctDNA). The molecular beacon with good stability was labeled with FAM and TAMRA at its ends, respectively. In the absence of ctDNA, the CRISPR/Cas12a system was inactive and MB could not be cleaved. Therefore, two fluorophores were in close proximity to each other, resulting in fluorescence resonance energy transfer (FRET). In the presence of ctDNA, it could recognize the Cas12a/crRNA complex and activate the trans-cleavage activity of Cas12a. Because ssDNA was the most susceptible substrate of Cas12a, the loop of MB was rapidly cleaved first. After cleavage, two fluorophores were far from each other, leading to the disappearance of FRET phenomenon and an obvious fluorescent enhancement of FAM. The experimental conditions such as the base numbers of the hairpin loop, the concentration of MB, and the concentration ratio of crRNA to Cas12a were optimized. Under the optimal conditions, a linear relationship ranging from 1.7 pmol/L to 500 pmol/L for ctDNA quantitative detection was observed and its detection limit was 600 fmol/L. In addition, this sensor could be used to detect ctDNA in serum samples and the recoveries were in the range of 93%-110%.
  • 加载中
    1. [1]

      BURRELL R A, MCGRANAHAN N, BARTEK J, SWANTON C. Nature, 2013, 501(7467):338-345.

    2. [2]

      MURTAZA M, DAWSON S J, TSUI D W Y, GALE D, FORSHEW T, PISKORZ A M, PARKINSON C, CHIN S F, KINGSBURY Z, WONG A S C, MARASS F, HUMPHRAY S, HADFIELD J, BENTLEY D, CHIN T M, BRENTON J D, CALDAS C, ROSENFELD N. Nature, 2013, 497(7447):108-112.

    3. [3]

      YOUNG E, PHILPOTT H, SINGH R. World J. Gastroenterol., 2021, 27(31):5126-5151.

    4. [4]

      GANDARA D R, PAUL S M, KOWANETZ M, SCHLEIFMAN E, ZOU W, LI Y, RITTMEYER A, FEHRENBACHER L, OTTO G, MALBOEUF C, LIEBER D S, LIPSON D, SILTERRA J, AMLER L, RIEHL T, CUMMINGS C A, HEGDE P S, SANDLER A, BALLINGER M, FABRIZIO D, MOK T, SHAMES D S. Nat. Med., 2018, 24(9):1441-1448.

    5. [5]

      SIRAVEGNA G, MARSONI S, SIENA S, BARDELLI A. Nat. Rev. Clin. Oncol, 2017, 14(9):531-548.

    6. [6]

      BEDARD P L, HANSEN A R, RATAIN M J, SIU L L. Nature, 2013, 501(7467):355-364.

    7. [7]

      WAN J C M, MASSIE C, GARCIA-CORBACHO J, MOULIERE F, BRENTON J D, CALDAS C, PACEY S, BAIRD R, ROSENFELD N. Nat. Rev. Cancer, 2017, 17(4):223-238.

    8. [8]

      DIEHL F, SCHMIDT K, CHOTI M A, ROMANS K, GOODMAN S, LI M, THORNTON K, AGRAWAL N, SOKOLL L, SZABO S A, KINZLER K W, VOGELSTEIN B, DIAZ JR L A. Nat. Med., 2008, 14(9):985-990.

    9. [9]

      FREIDIN M B, FREYDINA D V, LEUNG M, MONTERO FERNANDEZ A, NICHOLSON A G, LIM E. Clin. Chem., 2015, 61(10):1299-1304.

    10. [10]

      STAHLBERG A, KRZYZANOWSKI P M, JACKSON J B, EGYUD M, STEIN L, GODFREY T E. Nucleic Acids Res., 2016, 44:e105.

    11. [11]

      DAS J, IVANOV I, MONTERMINI L, RAK J, SARGENT E H, KELLEY S O. Nat. Chem., 2015, 7(7):569-575.

    12. [12]

      TEENGAM P, SIANGPROH W, TUANTRANONT A, VILAIVAN T, CHAILAPAKUL O, HENRY C S. Anal. Chem., 2017, 89(10):5428-5435.

    13. [13]

      NOH S, HA D T, YANG H, KIM M S. Analyst, 2015, 140(12):3947-3952.

    14. [14]

      FAURE G, SHMAKOV S A, YAN W X, CHENG D R, SCOTT D A, PETERS J E, MAKAROVA K S, KOONIN E V. Nat. Rev. Microbiol., 2019, 17(8):513-525.

    15. [15]

      YAN W X, HUNNEWELL P, ALFONSE L E, CARTE J M, KESTON-SMITH E, SOTHISELVAM S, GARRITY A J, CHONG S, MAKAROVA K S, KOONIN E V, CHENG D R, SCOTT D A. Science, 2019, 363(6422):88-91.

    16. [16]

      QIAO J, LIN S, SUN W, MA L, LIU Y. Chem. Commun., 2020, 56(83):12616-12619.

    17. [17]

      KLEINSTIVER B P, SOUSA A A, WALTON R T, TAK Y E, HSU J Y, CLEMENT K, WELCH M M, HORNG J E, MALAGON-LOPEZ J, SCARFÒ I, MAUS M V, PINELLO L, ARYEE M J, JOUNG J K. Nat. Biotechnol., 2019, 37(3):276-282.

    18. [18]

      STELLA S, MESA P, THOMSEN J, PAUL B, ALCÓN P, JENSEN S B, SALIGRAM B, MOSES M E, HATZAKIS N S, MONTOYA G. Cell, 2018, 175(7):1856-1871.e21.

    19. [19]

      CHEN J S, MA E, HARRINGTON L B, DA COSTA M, TIAN X, PALEFSKY J M, DOUDNA J A. Science, 2018, 360(6387):436-439.

    20. [20]

      ZHANG G, ZHANG L, TONG J, ZHAO X, REN J. Microchem. J., 2020, 158:105239.

    21. [21]

      XIONG Y, ZHANG J, YANG Z, MOU Q, MA Y, XIONG Y, LU Y. J. Am. Chem. Soc., 2020, 142(1):207-213.

    22. [22]

      ZHANG H, ZHOU Y, LUO D, LIU J, YANG E, YANG G, FENG G, CHEN Q, WU L. RSC Adv., 2021, 11(9):4983-4990.

    23. [23]

      YING Z M, WU Z, TU B, TAN W, JIANG J H. J. Am. Chem. Soc., 2017, 139(29):9779-9782.

    24. [24]

      PENG L, ZHOU J, YIN L, MAN S, MA L. Anal. Chim. Acta, 2020, 1125:162-168.

    25. [25]

      LI S Y, CHENG Q X, LIU J K, NIE X Q, ZHAO G P, WANG J. Cell Res., 2018, 28(4):491-493.

    26. [26]

      LI X, ZHANG D, GAN X, LIU P, ZHENG Q, YANG T, TIAN G, DING S, YAN Y. ACS Synth. Biol., 2021, 10(6):1481-1489.

    27. [27]

      LOO A H, SOFER Z, BOUSA D, ULBRICH P, BONANNI A, PUMERA M. ACS Appl. Mater. Interfaces, 2016, 8(3):1951-1957.

    28. [28]

      UYGUN Z O, YENIAY L, GIRGIN SAĞIN F. Anal. Chim. Acta, 2020, 1121:35-41.

    29. [29]

      SOARES J C, SOARES A C, RODRIGUES V C, MELENDEZ M E, SANTOS A C, FARIA E F, REIS R M, CARVALHO A L, OLIVEIRA O N. ACS Appl. Mater. Interfaces, 2019, 11(50):46645-46650.

    30. [30]

      CHANG H, ZHANG Y, YANG F, WANG C, DONG H. Front. Chem., 2018, 6:530.

    31. [31]

      WANG J, HUA G, LI L, LI D, WANG F, WU J, YE Z, ZHOU X, YE S, YANG J, ZHANG X, REN L. Analyst, 2020, 145(16):5553-5562.

    32. [32]

      WANG Y, KONG S L, SU X D. RSC Adv., 2020, 10(3):1476-1483.

    33. [33]

      LIU G, MA X, TANG Y, MIAO P. Analyst, 2020, 145(4):1174-1178.

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Yuqing LiuShiling ZhangKai JiangShiyue DingLimei XuYingqi LiuTing WangFenfen ZhengWeiwei XiongJun-Jie Zhu . Near-infrared light responsive upconversion-DNA nanocapsules for remote-controlled CRISPR-Cas9 genome editing. Chinese Chemical Letters, 2025, 36(5): 110282-. doi: 10.1016/j.cclet.2024.110282

    3. [3]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    4. [4]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    5. [5]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    6. [6]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    9. [9]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    10. [10]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    11. [11]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    12. [12]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    15. [15]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    18. [18]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    19. [19]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    20. [20]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

Metrics
  • PDF Downloads(29)
  • Abstract views(2073)
  • HTML views(223)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return