Citation: WANG Jun-Yang,  DUAN Zi-Xuan,  WU Tong,  WANG Wei,  SUN Chun-Yan. Visual and Quantitative Detection of Lead Ion Based on G-quadruplex-hemin DNAzyme-mediated Etching of Gold Nanorods[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(10): 1473-1481. doi: 10.19756/j.issn.0253-3820.221180 shu

Visual and Quantitative Detection of Lead Ion Based on G-quadruplex-hemin DNAzyme-mediated Etching of Gold Nanorods

  • Corresponding author: SUN Chun-Yan, sunchuny@jlu.edu.cn
  • Received Date: 13 April 2022
    Revised Date: 2 July 2022

    Fund Project: Supported by the Innovation Training Project of Jilin University's "College Student Innovation and Entrepreneurship Training Program" (No.202110183164).

  • A label-free visualized lead ion biosensor was constructed based on G-quadruplex-hemin DNAzyme-mediated etching of gold nanorods (AuNRs). Hemin could induce the transformation of the aptamer PS2.M into a G-quadruplex structure to generate a G-quadruplex-hemin DNAzyme with peroxidase-like activity. 3,3',5,5'-Tetramethylbenzidine (TMB) was oxidized to form a blue diimine derivative TMB+, and the enzymatic reaction was terminated after adding H2SO4, and TMB+ became TMB2+ (yellow). Under the action of hexadecyl trimethyl ammonium bromide (CTAB), TMB2+ could effectively oxidize Au(0) to Au(I), thereby realizing the etching of AuNRs, and the solution turned yellow. Due to the highly specific interaction between PS2.M and Pb2+, and the ability of Pb2+ to stabilize G-quadruplexes was significantly stronger than that of hemin, G-quadruplexes-hemin DNAzyme with enzyme-like activity could not be formed in the presence of Pb2+, thus unable to etch AuNRs. Therefore, different concentrations of Pb2+ made the solutions produce distinct color changes that could be easily identified with naked eyes. The ratiometric quantitative detection of Pb2+ was achieved by measuring the absorbance of the longitudinal surface plasmon absorption peak of AuNRs and the TMB+ absorption peak at 450 nm, with a linear range of 5-5000 nmol/L and a detection limit as low as 2.0 nmol/L. The method was successfully applied to detection of Pb2+ in Songhua River water and tap water samples, with spiked recoveries were 98.7%-102.5% and 94.8%-108.2%, respectively, and the results were consistent with the detection results of inductively coupled plasma-mass spectrometry (ICP-MS). The method ingeniously designed the nucleic acid sequence, and realized the rapid and high-sensitivity visual detection of Pb2+.
  • 加载中
    1. [1]

    2. [2]

      BI X Y, LI Z G, WANG S X, ZHANG L, XU R, LIU J L, YANG H M, GUO M Z. Environ. Sci. Technol., 2017, 51(22):13502-13508.

    3. [3]

      LLOBET J M, FALCO G, CASAS C, TEIXIDO A, DOMINGO J L. J.Agric. Food Chem., 2003, 51(3):838-842.

    4. [4]

      HSU P C, GUO Y L. Toxicology, 2002, 180(1):33-44.

    5. [5]

      World Health Organization (2017) Guidelines for Drinking Water Quality. WHO, Geneva.

    6. [6]

      MA R, VAN MOL W, ADAMS F. Anal. Chim. Acta, 1994, 293(3):251-260.

    7. [7]

      WAN Z, XU Z, WANG J. Analyst, 2006, 131(1):141-147.

    8. [8]

      COCHERIE A, ROBERT M. Chem. Geol., 2007, 243(1-2):90-104.

    9. [9]

      ELFERING H, ANDERSSON J, POLL K. Analyst, 1998, 123(4):669-674.

    10. [10]

      OCHSENKUHN-PETROPOULOU M, OCHSENKUHN K M, Fresenius' J. Anal. Chem., 2001, 369(7-8):629-632.

    11. [11]

      MA Y D, YU C, YU Y, CHEN J, GAO R F, HE J L. Microchim. Acta, 2019, 186(10):677.

    12. [12]

      POOLSUP S, KIM C Y. Curr. Opin. Biotechnol., 2017, 48:180-186.

    13. [13]

      ZHANG Y, LAI B S, JUHAS M. Molecules, 2019, 24(5):941.

    14. [14]

      SCHLUP T, COONEY C. Nucleic Acids Res., 1998, 26(19):4524-4530.

    15. [15]

      WANG R E, ZHANG Y, CAI J F, CAI W B, GAO T. Curr. Med. Chem., 2011, 18(27):4175-4184.

    16. [16]

      ZHOU W, DING J, LIU J. Theranostics, 2017, 7(4):1010-1025.

    17. [17]

      PENG H, NEWBIGGING A M, WANG Z, TAO J, DENG W, LE X C, ZHANG H. Anal. Chem., 2018, 90(1):190-207.

    18. [18]

      LI Y, SEN D. Nat. Struct. Biol., 1996, 3(9):743-747.

    19. [19]

      LI Y, SEN D. Biochemistry, 1997, 36(18):5589-5599.

    20. [20]

      LI Y, SEN D. Chem. Biol., 1998, 5(1):1-12.

    21. [21]

      TRAVASCIO P, LI Y, SEN D. Chem. Biol., 1998, 5(9):505-517.

    22. [22]

      ZHANG D, WANG W, DONG Q, HUANG Y, WEN D, MU Y, YUAN Y. Microchim. Acta, 2018, 185(1):75.

    23. [23]

      SANG Y, XU Y J, XU L L, CHENG W, LI X M, WU J L. Microchim. Acta, 2017, 184(7):2465-2471.

    24. [24]

      NASIR M, NAWAZ M H, LATIF U, YAQUB M, HAYAT A, RAHIM A. Microchim. Acta, 2017, 184(2):323-342.

    25. [25]

      ZONG C, ZHANG D, YANG H, WANG S, CHU M, LI P. Microchim. Acta, 2017, 184(9):3197-3204.

    26. [26]

      HUANG X, EL-SAYED I H, QIAN W, EL-SAYED M A. J. Am. Chem. Soc, 2006, 128(6):2115-2120.

    27. [27]

      TSUNG C K, KOU X, SHI Q, ZHANG J, YEUNG M H, WANG J, STUCKY G D. J. Am. Chem. Soc., 2006, 128(16):5352-5353.

    28. [28]

      NIKOOBAKHT B, EL-SAYED M A. Chem. Mater., 2003, 15(10):1957-1962.

    29. [29]

      CHEN G Z, BAI W S, JIN Y, ZHENG J B. Talanta, 2021, 232:122405.

    30. [30]

      SANNIGRAHI A, CHOWDHURY S, NANDI I, SANYAL D, CHALL S, CHATTOPADHYAY K. Nanoscale Adv., 2019, 1(9):3660-3669.

    31. [31]

    32. [32]

      YUAN M, SONG Z H, FEI J Y, WANG X L, XU F, CAO H, YU J S. Microchim. Acta, 2017, 184(5):1397-1403.

    33. [33]

      CHEN Y, LI H H, GAO T, ZHANG T T, XU L J, WANG B, WANG J N, PEI R J. Sens. Actuators, B, 2018, 254:214-221.

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    3. [3]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    4. [4]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    5. [5]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    10. [10]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    11. [11]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    12. [12]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    13. [13]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    20. [20]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

Metrics
  • PDF Downloads(8)
  • Abstract views(399)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return