Citation:
LI Hui-Min, ZHOU Yu-Chen, XIAO Yu-Fang, FAN Jing, FENG Su-Ling, XU Sheng-Rui. Application of Cooling-assisted Solid Phase Microextraction in Analysis of Complex Matrix Sample[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(9): 1289-1298.
doi:
10.19756/j.issn.0253-3820.221157
-
The green sample pretreatment technique has been one of the research hotspots in the analysis of complex matrix samples. Although solvent-free extraction of volatile organic compounds in samples can be implemented by headspace solid-phase microextraction (HS-SPME), it is difficult to achieve satisfactory results for complex matrix samples. Cooling-assisted solid phase microextraction (CA-SPME) allows for heating sample matrix and cooling coating simultaneously, which overcomes the drawbacks of regular HS-SPME, and effectively promotes the extraction efficiency for volatile and semi-volatile compounds in complex matrix samples. Thus, the solvent-free sample analysis in complex matrix can be accomplished by CA-SPME. Given its unique advantages, CA-SPME provides a new approach for green sample analysis from complex matrix. Therefore, the recent advances of CA-SPME were introduced in this review, including the studies in CA-SPME devices, the factors affecting extraction efficiency, and the applications of CA-SPME. Finally, the future trends and prospective were also discussed. This review aimed to provide a valuable reference for research in complex sample analysis.
-
-
-
[1]
MOHAMED H. Front. Chem., 2022, 9:785830.
-
[2]
KANU A B. J. Chromatogr. A, 2021, 1654:462444.
-
[3]
KIM H, CHO Y, LEE B S, CHOI I S. J. Chromatogr. A, 2019, 1597:17-24.
-
[4]
ARTHUR C L, PAWLISZYN J. Anal. Chem., 1990, 62(19):2145-2148.
-
[5]
PENG S, HUANG X Y, HUANG Y Y, HUANG Y Q, ZHENG J, ZHU F, XU J Q, OUYANG G F. J. Sep. Sci., 2022, 45(1):282-304.
-
[6]
DELINSKA K, RAKOWSKA P W, KLOSKOWSKI A. TrAC, Trends Anal. Chem., 2021, 143:116386.
-
[7]
REYES-GARCAS N, GIONFRIDDO E, GOMEZ-RIOS A G, ALAM N M, BOYACI E, BOJKO B, SINGH V, GRANDY J J, PAWLISZYN J. Anal. Chem., 2018, 90(1):302-360.
-
[8]
XU S R, LIU Q Q, WANG C C, XIAO L, FENG S L, LI N, CHEN C P. Talanta, 2020, 209:120519.
-
[9]
ZARABI S, HEYDARI R, MOHAMMADI S Z. Microchem. J., 2021, 170:106676.
-
[10]
SUN M, LI C Y, FENG J Q, SUN H L, SUN M X, FENG Y, JI X P, HAN S, FENG J J. TrAC, Trends Anal. Chem., 2022, 146:116497.
-
[11]
ZHANG Y P, LUAN C C, LU Z Y, CHEN N, ZHANG Y J, CUI C X. J. Chromatogr. A, 2022, 1670:462948.
-
[12]
LIU H J, HU X Q, ZHANG J K, NING H Y, HUANG Z P. Chromatographia, 2022, 85(5):387-394.
-
[13]
DZIEDZIC D, NAWALA J, GORDON D, DAWIDZIUK B, POPIEL S. Anal. Chim. Acta, 2022, 1202:339649.
-
[14]
MASITE N S, NCUBE S, MTUNZI F M, MADIKIZELA L M, PAKADE V E. Food Chem., 2022, 369:130944.
-
[15]
WANG J B, SUN J, XIAO J H, FANG X R, LI J H, LIN X C. Microchem. J., 2022, 179:107540.
-
[16]
JIANG R F, LIN W, WEN S J, ZHU F, LUAN T G, OUYANG G F. J. Chromatogr. A, 2015, 1406:27-33.
-
[17]
SOUFI G, BAGHERI H, RAD L Y, MINAEIAN S. Anal. Chim. Acta, 2022, 1198:339550.
-
[18]
WAN N, CHANG Q Y, HOU F Y, LI J, ZANG X H, ZHANG S H, WANG C, WANG Z. Anal. Chim. Acta, 2022, 1195:339458.
-
[19]
XU S R, DONG P L, QIN M, LIU H L, LONG A Y, CHEN C P, FENG S L, WU H W. Microchim. Acta, 2021, 188(10):337.
-
[20]
LI J, WANG Z, LI J Q, ZHANG S H, AN Y J, HAO L, YANG X M, WANG C, WANG Z, WU Q H. Food Chem., 2022, 388:133007.
-
[21]
LIU B, ZHENG X, KE Y C, CAO X, SUN Q, WU H. J. Chromatogr. A, 2022, 1673:463068.
-
[22]
SPADAFORA N D, MASCREZ S, MCGREGOR L, PURCARO G. Food Chem., 2022, 393:132438.
-
[23]
GODAGE N H, GIONFRIDDO E. J. Chromatogr. B, 2022, 1203:123308.
-
[24]
ALAM M N, PAWLISZYN J. Anal. Chem., 2016, 88(17):8632-8639.
-
[25]
WANG Z W, HUANG Y J, HU Y L, PENG S, PENG X R, LI Z W, ZHENG J, ZHU F, OUYANG G F. Microchem. J., 2022, 179:107535.
-
[26]
XU S R, DONG P L, LIU H L, LI H M, CHEN C P, FENG S L, FAN J. J. Hazard. Mater., 2022, 429:128384.
-
[27]
ZHANG Z Y, PAWLISZYN J. Anal. Chem., 1995, 67(1):34-43.
-
[28]
GHIASVAND A R, HOSSEINZADEH S, PAWLISZYN J. J. Chromatogr. A, 2006, 1124(1):35-42.
-
[29]
JIANG R F, CARASEK E, RISTICEVIC S, CUDJOE E, WARREN J, PAWLISZYN J. Anal. Chim. Acta, 2012, 742:22-29.
-
[30]
GUO J, JIANG R F, PAWLISZYN J. J. Chromatogr. A, 2013, 1307:66-72.
-
[31]
GHIASVAND A R, PIRDADEH-BEIRANVAND M. Anal. Chim. Acta, 2015, 900:56-66.
-
[32]
SERENJEH F N, HASHEMI P, GHIASVAND A R, RASOLZADEH F, HEYDARI N, BADIEI A. Anal. Chim. Acta, 2020, 1125:128-134.
-
[33]
MENEZES H C, CARDEAL Z D. J. Chromatogr. A, 2011, 1218(21):3300-3305.
-
[34]
MENEZES H C, PAIVA M, SANTOS R R, SOUSA L P, RESENDE S F, SATURNINO J A, PAULO B P, CARDEAL Z L. Microchem. J., 2013, 110:209-214.
-
[35]
MENEZES H C, PAULO B P, COSTA N T, CARDEAL Z L. Microchem. J., 2013, 109(1):93-97.
-
[36]
HADDADI S H, PAWLISZYN J. J. Chromatogr. A, 2009, 1216(14):2783-2788.
-
[37]
XU S R, LI H M, WU H W, XIAO L, DONG P L, FENG S L, FAN J. Anal. Chim. Acta, 2020, 1115:7-15.
-
[38]
JIANG R, PAWLISZYN J. J. Chromatogr. A, 2014, 1338:17-23.
-
[39]
CHIA K J, LEE T Y, HUANG S D. Anal. Chim. Acta, 2004, 527(2):157-162.
-
[40]
LIAO L, JI Y, WANG Y, SUN T, JIA J. J. Chromatogr. A, 2006, 1135(1):1-5.
-
[41]
MARTENDAL E, CARASEK E. J. Chromatogr. A, 2011, 1218(13):1707-1714.
-
[42]
CARASEK E, CUDJOE E, PAWLISZYN J. J. Chromatogr. A, 2007, 1138(1-2):10-17.
-
[43]
XU S R, SHUAI Q, PAWLISZYN J. Anal. Chem., 2016, 88(18):8936-8941.
-
[44]
ARMADA D, CELEIRO M, DAGNAC T, LLOMPART M. J. Chromatogr. A, 2022, 1668:462911.
-
[45]
ALONSO M L, ROMAN I S, BARTOLOME L, MONFORT N, ALONSO R M, VENTURA R. Microchem. J., 2022, 180:107567.
-
[46]
YU Y M, CHEN S, NIE Y, XU Y. Food Chem., 2022, 385:132502.
-
[47]
YU Q D, WU Y P, ZHANG W M, MA W D, WANG J, CHEN H, DING Q Q, ZHANG L. Talanta, 2022, 243:123380.
-
[48]
GONG X M, LI K, XU W J, JIN L M, LIU M X, HUA M M, TIAN G N. J. Chem., 2022, 2022:1315276.
-
[49]
HOU F Y, CHANG Q Y, WAN N, LI J, ZANG X H, ZHANG S H, WANG C, WANG Z. Food Chem., 2022, 388:133015.
-
[50]
HAN M S, KONG J J, WANG Y T, HUANG W, ZUO G C, ZHU F X, HE H, SUN C, XIAN Q M. Microchem. J., 2022, 179:107471.
-
[51]
DIAS C M, MENEZES H C, CARDEAL Z L. Anal. Bioanal. Chem., 2017, 409(11):2821-2828.
-
[52]
HUANG W N, SHAO W Y, JI Y, LI H M, CHEN J J, LIN Z. Talanta, 2022, 243:123341.
-
[53]
REZAEI M, RAJABI H R, ESFANDIARI N B, SHOKROLLAHI A, SETAYESHFAR I. J. Chromatogr. B, 2022, 1199:123262.
-
[54]
WANG S H, ZANG X H, ZHANG S H, WANG P J. Microchem. J., 2022, 179:107523.
-
[55]
TAJIK L, BAHRAMI A, GHIASVAND A, SHAHNA F G. Chem. Pap., 2017, 71(10):1829-1838.
-
[56]
BAKHYTKYZY I, BELKA W H, WASIK A K. Food Chem., 2022, 381:132290.
-
[57]
ZOU J, SAI T, DUAN S, WINNIFORD B, ZHANG D G. J. Chromatogr. A, 2022, 1671:462996.
-
[58]
DOS SANTOS R R, ORLANDO R M, CARDEAL Z D, MENEZES H C. Food Control, 2021, 126:108104.
-
[59]
MENEZES H C, PAULO B P, PAIVA M J N, DE BARCELOS S M R, MACEDO D F D, CARDEAL Z L. Microchem. J., 2015, 118:272-277.
-
[60]
ANTIPOFF V V D, DOS SANTOS R R, AUGUSTI D V, CARDEAL Z D, MENEZES H C. Food Anal. Method, 2021, 14(6):1194-1201.
-
[61]
GHIASVAND A, YAZDANKHAH F, PAULL B. Chromatographia, 2020, 83(4):531-540.
-
[62]
MEMARIAN E, HOSSEINY D S S, NOJAVAN S, MOVAHED S K. Anal. Chim. Acta, 2016, 935:151-160.
-
[63]
ROSIMEIRE R D S, ZENILDA D L C, HELV E C M.Chemosphere, 2020, 250:126-223.
-
[64]
BANITABA M H, DAVARANI S S, AHMAR H, MOVAHED S K. J. Sep. Sci., 2014, 37(9-10):1162-1169.
-
[1]
-
-
-
[1]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[2]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[3]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[4]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[5]
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
-
[6]
Zhaohu Li , Weidong Wang , Yuhao Liu , Mingzhe Han , Lingling Wei , Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090
-
[7]
Lisen Sun , Yongmei Hao , Zhen Huang , Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063
-
[8]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[9]
Lihui Jiang , Wanrong Dong , Hua Yang , Yongqing Xia , Hongjian Peng , Jun Yuan , Xiaoqian Hu , Zihan Zeng , Yingping Zou , Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056
-
[10]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081
-
[11]
Zhangshu Wang , Xin Zhang , Jixin Han , Xuebing Fang , Xiufeng Zhao , Zeyu Gu , Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056
-
[12]
Limin Shao , Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086
-
[13]
Gaoyan Chen , Chaoyue Wang , Juanjuan Gao , Junke Wang , Yingxiao Zong , Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011
-
[14]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[15]
Liuxie Liu , Jing He , Jiali Du , Shuang Mao , Qianggen Li . Extension of Computational Chemical-Assisted Dipole Moment Measurement Experiment. University Chemistry, 2025, 40(3): 363-370. doi: 10.12461/PKU.DXHX202407108
-
[16]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[17]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[18]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[19]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[20]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[1]
Metrics
- PDF Downloads(6)
- Abstract views(236)
- HTML views(20)