Citation: TIAN Zi-Yi,  XU Mu-Cen,  HU Shun-Ming,  ZHANG Chu-Yan,  CHEN Chen,  LI Yong-Xin. A Biosensor Based on Catalytic Hairpin Assembly and Fluorescence Resonance Energy Transfer for Detection of Enterovirus 71[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(1): 93-101. doi: 10.19756/j.issn.0253-3820.221154 shu

A Biosensor Based on Catalytic Hairpin Assembly and Fluorescence Resonance Energy Transfer for Detection of Enterovirus 71

  • Corresponding author: LI Yong-Xin, liyongxin_2006@163.com
  • Received Date: 30 March 2022
    Revised Date: 24 September 2022

    Fund Project: Supported by the Chengdu Science and Technology Bureau Project (No.2022-YF05-00296-SN) and the Innovation and Entrepreneurship Training Program for College students of Sichuan University (No.20221291L).

  • A biosensor based on catalytic hairpin assembly (CHA) and fluorescence resonance energy transfer (FRET) was established for detection of enterovirus 71 (EV71). A CHA signal amplification strategy was designed to detect the VP1 gene of EV71, which was consisted of a pair of hairpin probes (H1 and H2). The fluorophores Cy3 and Cy5 were labeled on H1 and H2, respectively. When the VP1 gene was present, the catalytic assembly reaction of H1 and H2 was triggered, Cy3 and Cy5 got closer and FRET occurred, leading to a reduced Cy3 signal and an enhanced Cy5 signal. In the absence of VP1 gene, H1 and H2 existed stably in the reaction system and could not generate FRET. Experimental conditions including reaction buffer concentration, the ratio of H1 to H2, reaction temperature and reaction time were optimized. Under the optimized conditions, the fluorescence intensity ratio of Cy5 to Cy3 showed a good linear relationship with EV71 VP1 gene concentration in the range of 0.5-20 nmol/L, and the detection limit was 73 pmol/L (3σ). The spiked recoveries of throat swab samples ranged from 99.6% to 103.1% with the relative standard deviations of 0.3% to 1.7%, showing good specificity and anti-interference ability. The proposed sensor had a good application prospect in EV71 virus monitoring and early diagnosis of hand, foot and mouth disease.
  • 加载中
    1. [1]

    2. [2]

      LI J, YIN X Z, LIN A W, NIE X Z, LIU L Y, LIU S H, LI N, WANG P, SONG S S, WANG S N, XU D Y. Hum. Vaccines Immunother., 2021, 17(7):2097-2100.

    3. [3]

    4. [4]

    5. [5]

    6. [6]

      TAN E L, YONG L L G, QUAK S H, YEO W C A, CHOW V T K, POH C L. J. Clin. Virol., 2008, 42(2):203-206.

    7. [7]

    8. [8]

      WANG Y, LI K J, XU G L, CHEN C, SONG G Q, DONG Z Z, LIN L, WANG Y, XU Z Y, YU M X, YU X G, YING B W, FAN Y B, CHANG L Q, GENG J. Research, 2021, 2021:2813643.

    9. [9]

      ALI M M, LI F, ZHANG Z Q, ZHANG K X, KANG D K, ANKRUM J A, LE X C, ZHAO W A. Chem. Soc. Rev., 2014, 43(10):3324-3341.

    10. [10]

      WANG Z Y, WANG Y, LIN L, WU T, ZHAO Z Z, YING B W, CHANG L Q. Biosens. Bioelectron., 2022, 195:113663.

    11. [11]

      DIRKS R M, PIERCE N A. Proc. Natl. Acad. Sci. U. S. A., 2004, 101(43):15275-15278.

    12. [12]

      WU J T, LV J R, ZHENG X Q, WU Z S. Talanta, 2021, 234:122637.

    13. [13]

      YIN P, CHOI H M, CALVERT C R, PIERCE N A. Nature, 2008, 451(7176):318-322.

    14. [14]

      LIU J M, ZHANG Y, XIE H B, ZHAO L, ZHENG L, YE H M. Small, 2019, 15(42):1902989.

    15. [15]

      WU Y, FU C C, SHI W B, CHEN J Y. Talanta, 2021, 235:122735.

    16. [16]

      ZHANG D Y, TURBERFIELD A J, YURKE B, WINFREE E. Science, 2007, 318(5853):1121-1125.

    17. [17]

      LI Y X, LUO Z W, ZHANG C Y, SUN R, ZHOU C, SUN C J. TrAC, Trends Anal. Chem., 2021, 134:116142.

    18. [18]

      ZHANG X J, HU Y, YANG X T, TANG Y Y, HAN S Y, KANG A, DENG H S, CHI Y M, ZHU D, LU Y. Biosens. Bioelectron., 2019, 138:111314.

    19. [19]

      SASMAL D K, PULIDO L E, KASAL S, HUANG J. Nanoscale, 2016, 8(48):19928-19944.

    20. [20]

      CHEN L, ZHANG X W, ZHANG C L, ZHOU G H, ZHANG W P, XIANG D S, HE Z K, WANG H Z. Anal. Chem., 2011, 83(19):7316-7322.

    21. [21]

      CHEN L, ZHANG X W, ZHOU G H, XIANG X, JI X H, ZHENG Z H, HE Z K, WANG H Z. Anal. Chem., 2012, 84(7):3200-3207.

    22. [22]

      XIONG L H, HE X W, ZHAO Z, KWOK R T K, XIONG Y, GAO P F, YANG F, HUANG Y L, SUNG H H, WILLIAMS I D, LAM J W Y, CHENG J Q, ZHANG R L, TANG B Z. ACS Nano, 2018, 12(9):9549-9557.

    23. [23]

    24. [24]

      GUKASSYAN V, HSU Y Y, KUNG S H, KAO F J. J. Biomed. Opt., 2007, 12(2):024016.

    25. [25]

      LU W W, KUNG F Y, DENG P A, LIN Y C, LIN C W, KUNG S H. Arch. Virol., 2017, 162(3):713-720.

    26. [26]

      REN D X, SUN C J, HUANG Z J, LUO Z W, ZHOU C, LI Y X. Sens. Actuators, B, 2019, 296:126577.

    27. [27]

      ZHOU C, ZOU H M, SUN C J, REN D X, XIONG W, LI Y X. Anal. Bioanal. Chem., 2018, 410(12):2981-2989.

    28. [28]

      ZHOU C, SUN C J, LUO Z W, LIU K P, YANG X J, ZOU H M, LI Y X, DUAN Y X. Sens. Actuators, B, 2018, 254:956-965.

    29. [29]

    30. [30]

    31. [31]

    32. [32]

      LEE K Y. Korean J. Pediatr., 2016, 59(10):395-401.

    33. [33]

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    3. [3]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    4. [4]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    8. [8]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . CeO2/Bi19Br3S27 S型异质结的高效界面电荷转移用于增强光催化CO2还原. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    11. [11]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    12. [12]

      Hongling Liu Yue Xia Guang Xu Yafei Yang Chunhua Qu . Bitter Cold Medicine, Good for Healing. University Chemistry, 2025, 40(3): 328-332. doi: 10.12461/PKU.DXHX202405039

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    15. [15]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    16. [16]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    17. [17]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(13)
  • Abstract views(687)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return