Citation: ZHAN Feng-Ping,  WU Yang-Yi,  DAI Xiao-Hui,  LIANG Chao,  GAO Feng,  WANG Qing-Xiang. Construction and Application of Fe(Ⅲ)-2-Aminoterephthalic Acid Metal-Organic Framework-based Label-free Chloramphenicol Electrochemical Sensor[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 539-548. doi: 10.19756/j.issn.0253-3820.221149 shu

Construction and Application of Fe(Ⅲ)-2-Aminoterephthalic Acid Metal-Organic Framework-based Label-free Chloramphenicol Electrochemical Sensor

  • Corresponding author: WANG Qing-Xiang, axiang236@vip.163.com
  • Received Date: 28 March 2022
    Revised Date: 21 October 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No. 21802064), the Natural Science Foundation of Fujian Province (Nos. 2021J01989, 2022J01899) and the Science and Technology Project of Fujian Administration for Market Regulation (No. FJMS2020048).

  • The development of rapid and simple electrochemical sensing technology for detection of chloramphenicol (CAP) has important application prospects in food safety and environmental monitoring. Herein, NH2-MIL-88(Fe) was successfully synthesized by a hydrothermal method using FeCl3∙·6H2O and 2-aminoterephthalic acid (2-ATPA) as the starting materials. Then, the NH2-MIL-88(Fe) was covalently anchored on the surface of carboxylated glassy carbon electrode through the amino group on 2-ATPA. Furthermore, the 5'-PO43- modified chloramphenicol aptamer (C-Apt) was self-assembled on the NH2-MIL-88(Fe) surface through the coordination between -PO43- and Fe3+ to construct a novel label-free electrochemical biosensing interface. The immobilization of C-Apt did not need any crosslinking agent or pre-treatment. Electrochemical assays showed that the NH2-MIL-88(Fe) modified electrode had strong catalytic activity for 3,3',5,5'-tetramethylbenzidine (TMB)/H2O2 system due to the nano enzymetic activity of NH2-MIL-88(Fe); while the catalytic activity could be inhibited after forming a barrier layer that generated by the capture of CAP by C-Apt, through which the target CAP could be detected through the label-free method. The quantitative analysis results showed that the catalytic current (Ip) for the oxidation of TMB/H2O2 system had a good linear relationship with the negative logarithm of CAP concentration (-lgC) within the concentration range of 1.0 pmol/L -0.1 μmol/L, and the detection limit was as low as 330 fmol/L (S/N=3). The biosensor could be used for detection of CAP residue in actual milk samples, which provided a new idea for the rapid detection of CAP residue in the food field.
  • 加载中
    1. [1]

      XU H, ZHANG Y, LI J, HAO Q, LI X, LIU F. Environ. Pollut., 2019, 257:113610.

    2. [2]

      MAUGI R, GAMBLE B, BUNKA D, PLATT M. Talanta, 2021, 225:122068.

    3. [3]

      YANG T, CHEN H, GE T, WANG J, LI W, JIAO K. Talanta, 2015, 144:1324-1328.

    4. [4]

      CODOGNOTO L, WINTER E, DORETTO K M, MONTEIRO G B, RATH S. Microchim. Acta, 2010, 169(3-4):345-351.

    5. [5]

      KOR K, ZAREI K. J. Electroanal. Chem., 2014, 733:39-46.

    6. [6]

      XIAO L, LI J, LICHTFOUSE E, LI Z, WANG Q, LIU F. J. Hazard. Mater., 2021, 410:124977.

    7. [7]

      WANG X, LI J H, JIAN D, ZHANG Y, SHAN Y K, WANG S Y, LIU F. Sens. Actuators, B, 2021, 329:129173.

    8. [8]

      SONG X, HUANG D, ZHANG L, WANG H, WANG L, BIAN Z. Electrochim. Acta, 2020, 330:135187.

    9. [9]

    10. [10]

      IMPENS S, REYBROECK W, VERCAMMEN J, COURTHEYN D, OOGHE S, DE WASCH K, SMEDTS W, DE BRABANDER H. Anal. Chim. Acta, 2003, 483(1-2):153-163.

    11. [11]

    12. [12]

      XIAO J, HU X, WANG K, ZOU Y, GYIMAH E, YAKUBU S, ZHANG Z. Biosens. Bioelectron., 2020, 150:111883.

    13. [13]

    14. [14]

      YIN J L, GUO W J, QIN X L, XHAO J, PEI M S, DING F. Sens. Actuators, B, 2017, 241:151-159.

    15. [15]

      KIM S N, PARK C G, HUH B K, LEE S H, MIN C H, LEE Y Y, KIM Y K, PARK K H, CHOY Y B. Acta Biomater., 2018, 79:344-353.

    16. [16]

      ZANGO Z U, ABU BAKAR N H H, SAMBUDI N S, JUMBRI K, ABDULLAH N A F, KADIR E A, SAAD B. J. Environ. Chem. Eng., 2020, 8(2):103544.

    17. [17]

      DUAN S, HUANG Y. J. Electroanal. Chem., 2017, 807:253-260.

    18. [18]

    19. [19]

      CHEN D, LI B, JIANG L, DUAN D, LI Y, WANG J, HE J, ZENG Y. RSC Adv., 2015, 5(119):97910-97917.

    20. [20]

      LIU Y L, ZHAO X J, YANG X X, LI Y F. Analyst, 2013, 138(16):4526-4531.

    21. [21]

      WANG S, MCGUIRK C M, ROSS M B, WANG S, CHEN P, XING H, LIU Y, MIRKIN C A. J. Am. Chem. Soc., 2017, 139(29):9827-9830.

    22. [22]

      FU Q, LOU J, ZHANG R, PENG L, ZHOU S, YAN W, MO C, LUO J. J. Solid State Chem., 2021, 294:121836.

    23. [23]

      GAO C, ZHANG Q, MA L, SONG P, XIA L X. ChemistrySelect, 2021, 6(18):4466-4472.

    24. [24]

      HOU L, QIN Y M, Lin T R, SUN Y, YE F G, ZHAO S L. Sens. Actuators, B, 2020, 321:128547.

    25. [25]

      PENG R, CHEN W, ZHOU Q. Ionics, 2022, 28(1):451-462.

    26. [26]

      KESAVAN G, CHEN S M. Colloids Surf., A, 2021, 615:126243.

    27. [27]

      ZHANG X, ZHANG Y C, ZHANG J W. Talanta, 2016, 161:567-573.

    28. [28]

      BAIKELI Y, MAMAT X, HE F, XIN X, LI Y, AISA H A, HU G. Ecotoxicol. Environ. Saf., 2020, 204:111066.

    29. [29]

      GAO F, SONG J, ZHANG B, TANAKA H, GAO F, QIU W, WANG Q. Chin. Chem. Lett., 2020, 31(1):181-184.

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    6. [6]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    7. [7]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    11. [11]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    12. [12]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    13. [13]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    14. [14]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    15. [15]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    18. [18]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    19. [19]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    20. [20]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

Metrics
  • PDF Downloads(10)
  • Abstract views(850)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return