Citation: LIN Hao,  HE Xuan,  CHEN Yan,  PANG Lu-Yi,  NIU Lei,  FU Xiu-Li. A Rapid Ratiometric Fluorescence Biosensor for Detection of Ochratoxin A Based on Paper Chip[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(9): 1336-1344. doi: 10.19756/j.issn.0253-3820.221127 shu

A Rapid Ratiometric Fluorescence Biosensor for Detection of Ochratoxin A Based on Paper Chip

  • Corresponding author: FU Xiu-Li, fuxiuli@ytu.edu.cn
  • Received Date: 15 March 2022
    Revised Date: 20 May 2022

    Fund Project: Supported by the Qingchuang Science and Technology program of Shandong Province, China (No.2019KJF029) and the National Natural Science Foundation of China (Nos.61801274, 21705139).

  • A novel ratiometric fluorescent paper chip was constructed using dual fluorescent dyes based on fluorescence resonance energy transfer (FRET) between donor Cy3 and acceptor Cy5. The Cy3-labeled aptamer and Cy5-labeled auxiliary DNA (aDNA) were simultaneously combined with the complementary DNA (cDNA) pre-modified on the surface of paper chip to form a specific double stranded structure. After forming double stranded structure, a ratiometric fluorescence signal change was realized by FRET between donor Cy3 and acceptor Cy5. In this case, the fluorescence intensity of Cy3 decreased accompanied by the increasing of the fluorescence intensity of Cy5. In the presence of ochratoxin A (OTA), the specific binding of aptamer toward OTA led to Cy3-labeled aptamer detaching from the double stranded structure, which resulted in an increasing distance between Cy3 and Cy5. Therefore, the fluorescence intensity of Cy3 increased while the fluorescence intensity of Cy5 decreased. The fluorescence response ratio values (F567/F669:the fluorescence intensity of Cy3 at 567 nm to the fluorescence intensity of Cy5 at 669 nm) exhibited a good linear response with OTA concentration in the range of 10-300 nmol/L and the detection limit was 5.6 nmol/L. The designed ratiometric fluorescent paper chip was applied to detect OTA in spiked peanut and red wine samples, and the recoveries were 92.7%-107.6%. This sensor provided an efficient and convenient method for detection of mycotoxin in food.
  • 加载中
    1. [1]

    2. [2]

      TIAN F Y, ZHOU J, JIAO B N, HE Y. Nanoscale, 2019, 11(19):9547-9555.

    3. [3]

      BITTNER A, CRAMER B, HUMPF H U. J. Agric. Food Chem., 2013, 61(51):12737-12743.

    4. [4]

      FREIRE L, FURTADO M M, GUERREIRO T M, DA GRAÇA J S, DA SILVA B S, OLIVEIRA D N, CATHARINO R R, SANT'ANA A S. Food Chem. Toxicol., 2019, 133:110756.

    5. [5]

    6. [6]

      KUTSANEDZIE F Y H, AGYEKUM A A, ANNAVARAM V, CHEN Q S. Food Chem., 2020, 315:126231.

    7. [7]

    8. [8]

      DING Y J, SHANG H Z, WANG X K, CHEN L X. Analyst, 2020, 145(18):6079-6084.

    9. [9]

      ZHONG Q D, LI G H, WANG D B, SHAO Y, LI J G, XIONG Z H, WU Y N. J. Agric. Food Chem., 2014, 62(35):8908-8913.

    10. [10]

      ARROYO-MANZANARES N, GÁMIZ-GRACIA L, GARCÍA-CAMPAÑA A M. Food Chem., 2012, 135(2):368-372.

    11. [11]

      CHEN F F, LUAN C L, WANG L, WANG S, SHAO L H. J. Sci. Food Agric., 2017, 97(6):1805-1810.

    12. [12]

      CAMPONE L, PICCINELLI A L, CELANO R, PAGANO I, RUSSO M, RASTRELLI L. Food Chem., 2018, 244:128-135.

    13. [13]

      WEI R W, QIU F, KONG W J, WEI J H, YANG M H, LUO Z L, QIN J P, MA X J. Food Control, 2013, 32:216-221.

    14. [14]

      GORYACHEVA I Y, DE SAEGER S, LOBEAU M, EREMIN S A, BARNA-VETRÓ I, VAN PETEGHEM C.Anal. Chim. Acta, 2006, 577:38-45.

    15. [15]

      NOVO P, MOULAS G, PRAZERES D M F, CHU V, CONDE J P. Sens. Actuators, B, 2013, 176:232-240.

    16. [16]

      BARTHELMEBS L, JONCA J, HAYAT A, PRIETO-SIMON B, MARTY J L. Food Control, 2011, 22:737-743.

    17. [17]

    18. [18]

      GUPTA P K, CHAUHAN D, KHAN Z H, SOLANKI P R.ACS Appl. Nano Mater., 2020, 3(3):2506-2516.

    19. [19]

      SUEA-NGAM A, HOWES P D, STANLEY C E, DEMELLO A J. ACS Sens., 2019, 4(6):1560-1568.

    20. [20]

      PACHECO J G, CASTRO M, MACHADO S, BARROSO M F, NOUWS H P A, DELERUE-MATOS C. Sens. Actuators, B, 2015, 215:107-112.

    21. [21]

      ARMSTRONG-PRICE D E, DEORE P S, MANDERVILLE R A. J. Agric. Food Chem., 2020, 68:2249-2255.

    22. [22]

      YU Y X, LI G L. J. Hazard. Mater., 2022, 422:126927.

    23. [23]

      LI Y P, ZHANG N, WANG H L, ZHAO Q. J. Agric. Food Chem., 2020, 68:4277-4283.

    24. [24]

      YANG C, WANG Y, MARTY J L, YANG X R. Biosens. Bioelectron., 2011, 26(5):2724-2727.

    25. [25]

      WANG C K, DONG X Y, LIU Q, WANG K. Anal. Chim. Acta, 2015, 860:83-88.

    26. [26]

      ZHU H S, LIU C H, LIU X X, QUAN Z, LIU W P, LIU Y J. Microchim. Acta, 2021, 188(3):62.

    27. [27]

      JIAO S S, LIU J, SUN J L, CHANG Y W, WANG S W, DAI S J, XU R M, DOU M H, LI Q J, WANG J, LI J L. Sens. Actuators, B, 2022, 355:131245.

    28. [28]

      JING X H, CHANG L, SHI L X, LIU X H, ZHAO Y, ZHANG W. ACS Appl. Bio Mater., 2020, 3(4):2385-2391.

    29. [29]

      HUANG X B, WU S H, HU H C, SUN J J. ACS Sens., 2020, 5(8):2636-2643.

    30. [30]

      CHEN R P, LI S, SUN Y F, HUO B Y, XIA Y T, QIN Y K, LI S N, SHI B D, HE D F, LIANG J, GAO Z X. Microchim. Acta, 2021, 188(8):281.

    31. [31]

      BOGOMOLOVA A, ALDISSI M. Biosens. Bioelectron., 2011, 26(10):4099-4103.

    32. [32]

      ZHANG J, ZHANG X, YANG G D, CHEN J H, WANG S H. Biosens. Bioelectron., 2013, 41:704-709.

    33. [33]

      QIAN J, WANG K,WANG C Q, HUA M J, YANG Z T, LIU Q, MAO H P, WANG K. Analyst, 2015, 140(21):7434-7442.

    34. [34]

      ZENG H L, ZHU Y L, MA L L, XIA X H, LI Y H, REN Y, ZHAO W Y, YANG H, DENG R J. Dyes Pigm., 2019, 164:35-42.

    35. [35]

      TIAN J Y, WEI W Q, WANG J W, JI S J, CHEN G C, LU J S. Anal. Chim. Acta, 2018, 1000:265-272.

    36. [36]

    37. [37]

    38. [38]

      ZENG F Y, DUAN W D, ZHU B, MU T T, ZHU L Q, GUO J H, MA X. Anal. Chem., 2019, 91(1):1064-1070.

    39. [39]

      AHN H, BATULE B S, SEOK Y, KIM M G. Anal. Chem., 2018, 90(17):10211-10216.

    40. [40]

      JIANG Q, WU J D, YAO K, YIN Y L, GONG M M, YANG C B, LIN F. ACS Sens., 2019, 4(11):3072-3079.

    41. [41]

      ZHANG C M, YOU T T, YANG N, GAO Y K, JIANG L, YIN P G. Food Chem., 2019, 287:363-368.

    42. [42]

      BHARDWAJ J, DEVARAKONDA S, KUMAR S, JANG J. Sens. Actuators, B, 2017, 253:115-123.

    43. [43]

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    3. [3]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    4. [4]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    5. [5]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    8. [8]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    9. [9]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    12. [12]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    13. [13]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    14. [14]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    15. [15]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    16. [16]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    19. [19]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    20. [20]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

Metrics
  • PDF Downloads(8)
  • Abstract views(201)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return