Citation: YU Zi-Jing,  XIAO Ming-Shu,  PEI Hao,  LI Li. DNA Origami-based Enzyme Cascade Catalysis for Electrochemical Detection of Low Density Lipoprotein[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 850-858. doi: 10.19756/j.issn.0253-3820.221111 shu

DNA Origami-based Enzyme Cascade Catalysis for Electrochemical Detection of Low Density Lipoprotein

  • Corresponding author: LI Li, lli@chem.ecnu.edu.cn
  • Received Date: 1 March 2022
    Revised Date: 21 March 2022

    Fund Project: Supported by the National Natural Science Foundation of China(Nos. 22074041, 22104038), the Science and Technology Commission of Shanghai Municipality(Nos. 22ZR1419800, 18490740500) and the China Postdoctoral Science Foundation(Nos. 2020TQ0097, 2021M701212).

  • The development of many diseases(e.g., atherosclerosis) is closely associated with abnormal level of low density lipoprotein(LDL), and developing methods for rapid and sensitive detection of LDL is of great importance to early diagnosis of atherosclerosis. In this work, a novel electrochemical sensor based on DNA origami-based enzymatic cascade catalysis was reported for detection of LDL. Benefiting from the programmability and addressability of nucleic acids, two enzymes(i.e., cholesterol oxidase and horseradish peroxidase) were specifically assembled on DNA origami, and the cascade catalysis efficiency towards LDL was optimized by regulating their distance, including 20, 40 and 80 nm. Through Au-S chemical bond, DNA origami loading enzymes was modified on Au electrode to construct enzymatic cascade catalysis-based electrochemical sensor. The results demonstrated that this sensor showed excellent performance for LDL detection, with a linear response range of 2-15 μmol/L, a low limit of detection of 1.8 μmol/L(S/N=3), and good selectivity. The recoveries of LDL spiked in healthy human serum sample were 97.8%-103.6%, indicating good reproducibility and stability. This electrochemical sensor utilizing DNA origami-based enzymatic cascade catalysis provided a promising tool for rapid and sensitive detection of LDL, holding a great potential for early diagnosis of atherosclerosis.
  • 加载中
    1. [1]

      LIBBY P. Nature, 2021, 592(7855):524-533.

    2. [2]

      GLASS C K, WITZTUM J L. Cell, 2001, 104(4):503-516.

    3. [3]

      FERENCE B A, GINSBERG H N, GRAHAM I, RAY K K, PACKARD C J, BRUCKERT E, HEGELE R A, KRAUSS R M, RAAL F J, SCHUNKERT H. Eur. Heart J., 2017, 38(32):2459-2472.

    4. [4]

      BOREN J, CHAPMAN M J, KRAUSS R M, PACKARD C J, BENTZON J F, BINDER C J, DAEMEN M J, DEMER L L, HEGELE R A, NICHOLLS S J. Eur. Heart J., 2020, 41(24):2313-2330.

    5. [5]

      MCMAHON M, GROSSMAN J, FITZGERALD J, DAHLIN-LEE E, WAKKACE D J, THONG B Y, BADSHA H, KALUNIAN K, CHARLES C, NAVAB M, FOGELMAN A M, HAHN B H. Arthritis Rheum., 2006, 54(8):2541-2549.

    6. [6]

      TRPKOVIC A, RESANOVIC I, STANIMIROVIC J, RADAK D, MOUSA S A, CENIC-MILOSEVIC D, JEVREMOVIC D, ISENOVIC E R. Crit. Rev. Clin. Lab. Sci., 2015, 52(2):70-85.

    7. [7]

      DONG J, GUO H J, YANG R Y, LI H X, WANG S, ZHANG J T, ZHOU W Y, CHEN W X. Clin. Chim. Acta, 2012, 413(13-14):1071-1076.

    8. [8]

      TAN X W, TAKENAKA F, TAKEKAWA H, MATSUURA E. Heliyon, 2020, 6(6):e04114

    9. [9]

      BERNEIS K, LA BELLE M, BLANCHE P J, KRAUSS R M. J. Lipid Res., 2002, 43(7):1155-1159.

    10. [10]

      JIE G F, LIU B, PAN H C, ZHU J J, CHEN H Y. Anal. Chem., 2007, 79(15):5574-5581.

    11. [11]

      ALI M A, SOLANKI P R, SRIVASTAVA S, SINGH S, AGRAWAL V V, JOHN R, MALHOTRA B D. ACS Appl.Mater. Interfaces, 2015, 7(10):5837-5846.

    12. [12]

      WANG X, PEREIRA J H, TSUTAKAWA S, FANG X, ADAMS P D, MUKHOPADHYAY A, LEE T S. Metab.Eng., 2021, 64:41-51.

    13. [13]

      FU Y M, ZENG D D, CHAO J, JIN Y Q, ZHANG Z, LIU Hu J, LI D, MA H W, HUANG Q, GOTHELF K V. J.Am. Chem. Soc., 2013, 135(2):696-702.

    14. [14]

      XIAO M S, LAI W, MAN T T, CHANG B B, LI L, CHANDRASEKARAN A R, PEI H. Chem. Rev., 2019, 119(22):11631-11717.

    15. [15]

    16. [16]

      CAO M, SUN Y, XIAO M, LI L, LIU X, JIN H, PEI H. Chem. Res. Chin. Univ., 2020, 36(2):254-260.

    17. [17]

      JI W, LI X, XIAO M, SUN Y, LAI W, ZHANG H, PEI H, LI L. Chem.-Eur. J., 2021. 27(34):8745-8752.

    18. [18]

      HAN D, PAL S, NANGREAVE J, DENG Z, LIU Y, YAN H. Science, 2011, 332(6027):342-346.

    19. [19]

      HONG F, ZHANG F, LIU Y, YAN H. Chem. Rev., 2017, 117(20):12584-12640.

    20. [20]

      MALLIK L, DHAKAL S, NICHOLS J, MAHONEY J, DOSEY A M, JIANG S X, SUNAHARA R K, SKINIOTIS G, WALTER N G. ACS Nano, 2015, 9(7):7133-7141.

    21. [21]

      PEI H, SHA R J, WANG X W, ZHENG M, FAN C H, CANARY J W, SEEMAN N C. J. Am. Chem. Soc., 2019, 141(30):11923-11928.

    22. [22]

      XIAO M S, LAI W, WANG F, LI L, FAN C H, PEI H. J. Am. Chem. Soc., 2019, 141(51):20354-20364.

    23. [23]

    24. [24]

      VENEZIANO R, MOYER T J, STONE M B, WAMHOFF E C, READ B J, MUKHERJEE S, SHEPHERD T R, DAS J, SCHIEF W R, IRVINE D J, BATHE M. Nat. Nanotehnol., 2020, 15(8):716-723.

    25. [25]

      HONG F, ZHANG F, LIU Y, YAN H. Chem. Rev., 2017, 117(20):12584-12640.

    26. [26]

      PUCHKOVA A, VIETZ C, PIBIRI E, WUNSCH B, SANZ-PAZ M, ACUNA G P, TINNEFELD P. Nano Lett., 2015, 15(12):8354-8359.

    27. [27]

      OCHMANN S E, VIETZ C, TROFYMCHUK K, ACUNA G P, LALKENS B, TINNEFELD P. Anal. Chem. 2017, 89(23):13000-13007.

    28. [28]

      ZHAO D, KONG Y, ZHAO S, XING H. Top. Curr. Chem., 2020, 378:41.

    29. [29]

      NIEMEYER C M. Angew. Chem., Int. Ed., 2010, 49(7):1200-1216.

    30. [30]

      FU J, YANG Y R, DHAKAL S, ZHAO Z, LIU M, ZHANG T, WALTER N G, YAN H. Nat. Protoc., 2016, 11(11):2243-2273.

    31. [31]

      FU J, LIU M, LIU Y, WOOBURY N W, YAO H. J. Am. Chem. Soc., 2012, 134(12):5516-5519.

    32. [32]

      KAHN J S, XIONG Y, HUANG J, GANG O. JACS Au, 2022, 2(2):357-366.

    33. [33]

      SONG P, SHEN J, YE D, DONG B, WANG F, PEI H, WANG J, SHI J, WANG L, XUE W, HUANG Y, HUANG G, ZUO X, FAN C. Nat. Commun., 2020, 11:838.

    34. [34]

      KE Y G, LINDSAY S, CHANG Y, LIU Y, YAN H. Science, 2008, 319(5860):180-183.

    35. [35]

      GE Z, FU J, LIU M, JIANG S, ANDREONI A, ZUO X, LIU Y, YAN H, FAN C. ACS Appl. Mater. Interfaces, 2018, 11(15):13881-13887.

    36. [36]

      ZHANG J, SONG S P, WANG L H, PAN D, FAN C H. Nat. Protoc., 2007, 2(11):2888-2895.

    37. [37]

      ALI M A, KAMIL R K, SRIVASTAVA S, AGRAWAL V V, JOHN R, MALHOTRA B D. Langmuir, 2014, 30(14):4192-4201.

    38. [38]

      ALI M A, SRIVASTAVA S, PANDEY M K, AGRAWAL V V, JOHN R, MALHOTRA B D. Anal. Chem., 2014, 86(3):1710-1718.

    39. [39]

      LIU Y, YU D S, ZENG C, MIAO Z C, DAI L M. Langmuir, 2010, 26(9):6158-6160

    40. [40]

      YARA A, MANEL V. Electrochim. Acta, 2017, 229:458-466.

    41. [41]

      ALI M A, SIINGH C, MONDAL K, SRIVASTAVA S, SHARMA A, MALHOTRA B D. ACS Appl. Mater.Interfaces, 2016, 8(12):7646-7656.

  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    4. [4]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    5. [5]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    6. [6]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    9. [9]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    12. [12]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    14. [14]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    15. [15]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    16. [16]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    17. [17]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    18. [18]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    19. [19]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    20. [20]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

Metrics
  • PDF Downloads(8)
  • Abstract views(739)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return