Citation: BAO Xun,  ZHANG Qiang-Ling,  LIANG Qu,  SUN Qin,  XU Wei,  ZOU Xue,  HUANG Chao-Qun,  SHEN Cheng-Yin,  CHU Yan-Nan. Development of Gas Dilution System with Humidity Control Function Using a Novel Proportion-integral Two-flow Method[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 340-347. doi: 10.19756/j.issn.0253-3820.221110 shu

Development of Gas Dilution System with Humidity Control Function Using a Novel Proportion-integral Two-flow Method

  • Corresponding author: ZHANG Qiang-Ling, qlzhang@cmpt.ac.cn
  • Received Date: 1 March 2022
    Revised Date: 3 November 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22076190, 21876176) and the HFIPS Director′s Fund (Nos. BJPY2021B08, YZJJ2022QN45, YZJJZX202009).

  • Concentration calibration is the premise of accurate quantitative detection of gas analyzer, and concentration calibration cannot be separated from gas dilution system. In this work, a novel wet gas preparation method (proportion-integral (PI) two-flow method) was established, and that a simple yet accurate gas dilution system with humidity control function based on PI two-flow method was developed, which was not affected by intermediate variables. Firstly, the performance of the humidifier, an essential part of the system, was investigated. The results showed that there was a certain fluctuation (96%-103%) in the relative humidity (RH) at the outlet of the humidifier. Therefore, the PI two-flow method was developed to reduce the influence of the fluctuation on the humidity control accuracy of the whole system. A dew point transmitter was used to measure the RH at the system′s outlet as a feedback signal to automatically adjust the ratio of dry and wet gas, thereby realizing accurate control of humidity. The wet gas was prepared by the following method, the dry gas passing through a self-made bubbling humidifier. Subsequently, the system′s response characteristics were investigated by step input and sinusoidal input under different flow rates and temperature conditions. The results showed that the RH control range of the system was 5%-100%. The flow rate of the system could be up to 1000 mL/min. The RH control accuracy could realize 0.026%RH (25 °C, 100%RH) (without considering the measurement deviation of the dewpoint transmitter). The setting time reached 38 s (25 °C, 500 mL/min). The system could track the sinusoidal input when the period was more than 175 s in 1000 mL/min. Finally, the application research of the system was implemented by using proton transfer reaction mass spectrometry (PTR-MS). As the RH of sampling air of PTR-MS gradually increased, the relative ratio of H3O+ decreased, and the relative proportion of H3O+(H2O) increased. The above application showed that the new system could meet the application requirements of gas analysis instruments with large and continuous sampling flow rate in a wide humidity range (10%-100%). The new system would be expected to calibrate gas measurements instruments sensitive to humidity.
  • 加载中
    1. [1]

      SARKAR C, SINHA V, KUMAR V, RUPAKHETI M, PANDAY A, MAHATA K S, RUPAKHETI D, KATHAYAT B, LAWRENCE M G. Atmos. Chem. Phys., 2016, 16(6):3979-4003.

    2. [2]

      MATSUMOTO N, WATANABE T, KATO K. J. Chromatogr. A, 2013, 1282:190-193.

    3. [3]

      JARDINE K J, HENDERSON W M, HUXMAN T E, ABRELL L. Atmos. Meas. Tech., 2010, 3(6):1569-1576.

    4. [4]

      TAIPALE R, RUUSKANEN T M, RINNE J, KAJOS M K, HAKOLA H, POHJA T, KULMALA M. Atmos. Chem. Phys., 2008, 8(22):6681-6698.

    5. [5]

      PANG X. J. Environ. Sci., 2015, 32:196-206.

    6. [6]

      LI R, WARNEKE C, GRAUS M, FIELD R, GEIGER F, VERES P R, SOLTIS J, LI S M, MURPHY S M, SWEENEY C, PÉTRON G, ROBERTS J M, DE GOUW J. Atmos. Meas. Tech., 2014, 7(10):3597-3610.

    7. [7]

      WARNEKE C, VERES P, HOLLOWAY J S, STUTZ J, TSAI C, ALVAREZ S, RAPPENGLUECK B, FEHSENFELD F C, GRAUS M, GILMAN J B, DE GOUW J A. Atmos. Meas. Tech., 2011, 4(10):2345-2358.

    8. [8]

      HAN J, LIU X, CHEN D, JIANG M. J. Aerosol Sci., 2020, 139:105462.

    9. [9]

      CHEN H Y, CHEN C. Sensors, 2019, 19(5):1213.

    10. [10]

      ASHTON E, OAKLEY W C, BRACK P, DANN S E. ACS Appl. Energy Mater., 2022, 5(7):8336-8345.

    11. [11]

      EGGERT G. Heritage Sci., 2022, 10(1):54.

    12. [12]

      MILOSEVIC D. N, STEPANIC M. N, BABIC M. M. Therm. sci., 2012, 16(1):193-205.

    13. [13]

      CHOI B I, LEE S W, KIM J C, WOO S B. Int. J. Thermophys., 2015, 36(8):2231-2241.

    14. [14]

      ISHIWATA N, ABE H. AIP Adv., 2022, 12(3):035114.

    15. [15]

      ABD EL-GALIL D M, MAHMOUD E. Measurement, 2018, 124:159-162.

    16. [16]

      GÓMEZ J I S, TAKHTEHFOULADI E S, SCHLÖGL R, RULAND H. Chem. Ing. Tech., 2020, 92(10):1574-1585.

    17. [17]

      KARI E, MIETTINEN P, YLI-PIRILÄ P, VIRTANEN A, FAIOLA C L. Int. J. Mass Spectrom., 2018, 430:87-97.

    18. [18]

      ABD-UR-REHMAN H M, AL-SULAIMAN F A. Appl. Therm. Eng., 2017, 120:530-536.

    19. [19]

      PARK S, OH I H. J. Power Sources, 2009, 188(2):498-501.

    20. [20]

      RAMAN S, SWAMINATHAN S, BHARDWAJ S, TANNERU H K, BULLECKS B, RENGASWAMY R. Int. J. Hydrogen Energy, 2019, 44(1):389-407.

    21. [21]

      SUNG C C, BAI C Y, CHEN J H, CHANG S J. J. Power Sources, 2013, 239:151-156.

    22. [22]

      JIA Y, ZHANG R, LV X, ZHANG T, FAN Z. Processes, 2022, 10(3):534.

    23. [23]

      LIU C, ZHAO J, GU J, DU Y, LI Z, ZHU Z, MAO E. Appl. Sci., 2020, 10(9):3179.

    24. [24]

      SUN Q, BAO X, LIANG Q, XU W, ZHANG Q, ZOU X, HUANG C, SHEN C, CHU Y. J. Chromatogr. A, 2022, 1676:463210.

    25. [25]

      RAJESHWARAN S, AGEES KUMAR C, GANAPATHY K. Intell. Autom. Soft Comput., 2023, 35(2):1611-1625.

    26. [26]

      MANAP H H, ABDUL WAHAB A K, MOHAMED ZUKI F. Biomed. Signal Process. Control, 2021, 64:102300.

    27. [27]

      LAWRENCE M G. Bull. Am. Meteorol. Soc., 2005, 86(2):225-234.

  • 加载中
    1. [1]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    4. [4]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    5. [5]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    6. [6]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    7. [7]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    8. [8]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    9. [9]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    10. [10]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    11. [11]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    12. [12]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    13. [13]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    14. [14]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    15. [15]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    16. [16]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    17. [17]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    18. [18]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    19. [19]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    20. [20]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

Metrics
  • PDF Downloads(3)
  • Abstract views(1431)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return