Citation: YAN Lu,  LI Xiao-dan,  XIAO Ming-shu,  PEI Hao. DNA Molecular Machine-Integrated Microneedle Patches for in Situ Monitoring of Extracellular Adenosine Triphosphate[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(4): 516-524. doi: 10.19756/j.issn.0253-3820.221101 shu

DNA Molecular Machine-Integrated Microneedle Patches for in Situ Monitoring of Extracellular Adenosine Triphosphate

  • Corresponding author: PEI Hao, peihao@chem.ecnu.edu.cn
  • Received Date: 25 February 2022
    Revised Date: 17 March 2022

    Fund Project: the China Postdoctoral Science Foundation(Nos. 2020TQ0097, 2021M701212)Supported by the National Natural Science Foundation of China(Nos. 22074041, 22104038)

  • Extracellular adenosine triphosphate(ATP) as a signaling molecule participates in a series of physiological processes, and its abnormal metabolism is closely related to many diseases(e.g., inflammation, infectious diseases). Developing methods for in situ detection of extracellular ATP is of great importance to elucidating the mechanism of relevant diseases and their diagnosis. This work reports DNA molecular machine-integrated microneedle patches. The developed microneedle patch allows for rapidly swelling in aqueous solution and in-situ sampling of target ATP molecules; the DNA molecular machine driven by ATP can realize fluorescence signal amplification. Benefiting from these traits, the microneedle patch-based analytical system shows excellent performance for ATP detection, including wide detection range(1-500 μmol/L), low limit of detection(1 μmol/L) and good selectivity.The result demonstrated that this microneedle patch-based analytical system enables in situ monitoring of ATP secreted by living cells under the stimulation of 0.1 mol/L K+, and the ATP concentration is determined to be(10.9 ± 1.6) μmol/L, consistent with previous work. This work provides a promising analytical platform for in situ monitoring of extracellular ATP.
  • 加载中
    1. [1]

      ROBINSON D L, HERMANS A, SEIPEL A T, WIGHTMAN R M. Chem. Rev., 2008, 108(7):2554-2584.

    2. [2]

      QIAN Y R, WANG X, LI Y S, CAO Y Y, CHEN X Z. Mol. Cancer Res., 2016, 14(11):1087-1096.

    3. [3]

      BURNSTOCK G. Physiol. Rev., 2007, 87(2):659-797.

    4. [4]

      JUNGER W G. Nat. Rev. Immunol., 2011, 11(3):201-212.

    5. [5]

      IDZKO M, FERRARI D, ELTZSCHIG H K. Nature, 2014, 509(7500):310-317.

    6. [6]

      ELLIOTT M R, CHEKENI F B, TRAMPONT P C, LAZAROWSKI E R, KADL A, WALK S F, PARK D,WOODSON R I, OSTANKOVICH M, SHARMA P, LYSIAK J J, HARDEN T K, LEITING N, RAVICHANDRAN K S. Nature, 2009, 461(7261):282-286.

    7. [7]

      DI V F, ADINOLFI E. Oncogene, 2017, 36(3):293-303.

    8. [8]

      BEIGI R, KOBATAKE E, AIZAWA M, DUBYAK G R. Am. J. Physiol.:Cell Physiol., 1999, 276(1):C267-C278.

    9. [9]

      MA Y, GENG F H, WANG Y X, XU M T, SHAO C Y, QU P, ZHANG Y T, YE Y T. Biosens. Bioelectron., 2019, 134:36-41.

    10. [10]

      HECHT E, LIEDERT A, IGNATIUS A, MIZAIKAOFF B, KRANZ C. Biosens. Bioelectron., 2013, 44:27-33.

    11. [11]

      ZILLER C, LIN J, KNITTEL P, FRIEDRICH K, ANDRONESCU C, POLLER S, SCHUHMANN W, KRANZ C.ChemElectroChem, 2017, 4(4):864-871.

    12. [12]

      KUCHERENKO I S, DIDUKH D Y, SODATKIN O O, SOLDATKIN A P. Anal. Chem., 2014, 86(11):5455-5462.

    13. [13]

      HAMZAH A A, ABD A N, MAJLIS B Y, YUNAS J, DEE C F, BAIS B. J. Micromech. Microeng., 2012, 22(9):095017.

    14. [14]

      CHEN P C, HSIEH S J, CHEN C C, ZOU J. J. Nanomater., 2013, 2013:134953.

    15. [15]

      LEE K, LEE H C, LEE D S, JUNG H. Adv. Mater., 2010, 22(4):483-486.

    16. [16]

      HALDER J, GUPTA S, KUMARI R, DAS GUPTA G, RAI V K. J. Pharm. Innov., 2021, 16(3):558-565.

    17. [17]

      KEUM D H, JUNG H S, WANG T, SHIN M H, KIM Y E, KIM K H, AHN G O, HAHN S K. Adv. Healthc. Mater.,2015, 4(8):1153-1158.

    18. [18]

      HENRY S, MCALLISTER D V, ALLEN M G, PRAUSNITZ M R. J. Pharm. Sci., 1998, 87(8):922-925.

    19. [19]

      ALARCON J B, HARTLEY A W, HARVEY N G, MIKSZTA J A. Clin. Vaccine Immunol., 2007, 14(4):375-381.

    20. [20]

      LI W Z, HUO M R, ZHOU J P, ZHOU Y Q, HAO B H, TING L, YONG Z. Int. J. Pharmaceut., 2010, 389(1-2):122-129.

    21. [21]

      YIN P, CHOI H M T, CALVERT C R, PIERCE N A. Nature, 2008, 451(7176):318-322.

    22. [22]

      KAY E R, LEIGH D A, ZERBERTTO F. Angew. Chem., Int. Ed., 2006, 46(1-2):72-191.

    23. [23]

      OMABEGHO T, SHA R J, SEEMAN N C. Science, 2009, 324(5923):67-71.

    24. [24]

      LAI W, REN L, TANG Q, QU X M, LI J, WANG L H, LI L, FAN C H, PEI H. ACS Nano, 2018, 12(7):7093-7099.

    25. [25]

      YEHL K, MUGLER A, VIVEK S, LIU Y, ZHANG Y, FAN M Z, WEEKS E R, SALAITA K. Nat. Nanotechnol.,2016, 11(2):184-190.

    26. [26]

      LI J M, JOHNSON-BUCK A, YANG Y R, SHIH W M, YAN H, WALTER N G. Nat. Nanotechnol., 2018, 13(8):723-729.

    27. [27]

      QU X M, ZHU D, YAO G B, SU S, CHAO J, LIU H J, ZUO X L, WANG L H, SHI J Y, WANG L H, HUANG W,PEI H, FAN C H. Angew. Chem., Int. Ed., 2017, 56(7):1855-1858.

    28. [28]

      ZHANG H Q, LAI M D, ZUEHLKE A, PENG H Y, LI X F, LE C X. Angew. Chem., Int. Ed., 2015, 54(48):14326-14330.

    29. [29]

      YANG X L, TANG Y A, MASON S D, CHEN J B, LI F. ACS Nano, 2016, 10(2):2324-2330.

    30. [30]

      WANG L D, DENG R J, LI J H. Chem. Sci., 2015, 6(12):6777-6782.

    31. [31]

      HILL H D, MIRKIN C A. Nat. Protoc., 2006, 1(1):324-336.

    32. [32]

      COSTANTINI M, IDASZEK J, SZÖKE K, JAROSZEWICZ J, DENTINI M, BARBETTA A, BRINCHMANN J E,ŚWIESZKOWSKI W. Biofabrication, 2016, 8(3):035002.

    33. [33]

      BENTON J A, DEFOREST C A, VIVEKANANDAN V, ANSETH K S. Tissue Eng., Part A, 2009, 15(11):3221-3230.

    34. [34]

      A U B I N H, N I C H O L J W, H U T S O N C B, B A E H, S I E M I N S K I A L, C R O P E K D M, A K H YA R I P,KHADEMHOSSEINI A. Biomaterials, 2010, 31(27):6941-6951.

    35. [35]

      MAN T T, LAI W, XIAO M S, WANG X W, CHANDRASEKARAN A R, PEI H, LI L. Biosens. Bioelectron.,2020, 147:111742.

    36. [36]

      XIAO M S, LAI W, MAN T T, CHANG B B, LI L, CHANDRASEKARAN A R, PEI H. Chem. Rev., 2019,119(22):11631-11717.

    37. [37]

      XIAO M S, LAI W, WANG F, LI L, FAN C H, PEI H. J. Am. Chem. Soc., 2019, 141(51):20354-20364.

    38. [38]

      FABBRO A, SKORINKIN A, GRANDOLFO M, NISTRI A, GINIATULLIN R. J. Physiol., 2004, 560(2):505-517.

    39. [39]

      KASAI Y, OHTA T, NAKAZATO Y, ITO S. J. Vet. Med. Sci., 2001, 63(4):367-372.

    40. [40]

      ZHANG Y J, CLAUSMEYER J, BALAKINEJAD B, CÓRDOBA A L, ALI T, SHEVCHUK A, TAKAHASHI Y, NOVAK P, EEWARDS C, LAB M, GOPAL S, CHIAPPINI C, ANAND U, MAGNAN L, COOMBES R C,GORELIK J, MATSUE T, SCHUHMANN W, KLENERMAN D, SVIDERSKAYA E V, KORCHEV Y. ACS Nano,2016, 10(3):3214-3221.

    41. [41]

      ZHU Q, LIANG B, LIANG Y T, JI L, CAI Y, WU K, TU T T, REN H X, HUANG B B, WEI J W, FANG L,LIANG X, YE X S. Biosens. Bioelectron., 2020, 153:112019.

  • 加载中
    1. [1]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    2. [2]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    3. [3]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    6. [6]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    10. [10]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    11. [11]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    12. [12]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    13. [13]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    17. [17]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    18. [18]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    19. [19]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    20. [20]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

Metrics
  • PDF Downloads(10)
  • Abstract views(485)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return