Citation:
LI Yue, ZHANG Guo-Xia, CAI Zhao-Qing, QIU Han-Xun, WANG Zheng. Atmospheric Pressure Glow Discharge Combined with Cylindrical Confinement Enhanced Laser-Induced Breakdown Spectroscopy for Determination of Rare Earth in Soil[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(9): 1384-1390.
doi:
10.19756/j.issn.0253-3820.221100
-
Rare earth pollution in soil affects plant growth and accumulates in animals and humans through the food chain, and causes serious environmental and human health issues. To take effective measures to control the rare earth pollution, it is necessary to detect the content of rare earth elements in soil. Laser-induced breakdown spectroscopy (LIBS) has many advantages including in-situ, non-destructive, real-time and multi-element simultaneous analysis for solid samples such as soil. However, the sensitivity of this technique is low, which limits its application in the quantitative analysis of trace elements. In this work, a new method utilizing the combination of atmospheric pressure glow discharge (APGD) and cylindrical confinement (CC) was proposed to improve the detection sensitivity of laser-induced breakdown spectroscopy, which was applied to determination of Y, La, Eu, Yb and Lu rare earth elements in soil. The results showed that the detection sensitivity of LIBS for Y, La, Eu, Yb and Lu were enhanced by 11.6, 9.3, 7.9, 8.2 and 7.6 times by APGD and CC, respectively. To verify the accuracy of the proposed system, it was applied to the detection of soil certified reference materials and an unknown soil sample, and the relative errors between the detection values of this work and those of ICP-OES were 1.5%-8.6% and 1.8%-7.0%, respectively.
-
-
-
[1]
WANG L Q, LIANG T. Sci. Rep., 2015, 5:12483.
-
[2]
GOODENOUGH K M, WALL F, MERRIMAN D. Nat. Resour. Res., 2018, 27(2):201-216.
-
[3]
DINALI G S, ROOT R A, AMISTADI M K, CHOROVER J, LOPES G, GUILHERME L R G. Environ. Int., 2019, 128:279-291.
-
[4]
SABBIONI E, PIETRA R, GAGLIONE P, VOCATURO G, COLOMBO F, ZANONI M, RODI F. Sci. Total Environ., 1982, 26(1):19-32.
-
[5]
DOLEGOWSKA S, MIGASZEWSKI Z M. Environ. Pollut., 2013, 178:33-40.
-
[6]
CHEN H B, CHEN Z B, CHEN Z Q, OU X L, CHEN J J. Bull. Environ. Contam. Toxicol., 2020, 104(5):582-587.
-
[7]
LI X F, CHEN Z B, CHEN Z Q, ZHANG Y H. Chemosphere, 2013, 93(6):1240-1246.
-
[8]
GWENZI W, MANGORI L, DANHA C, CHAUKURA N, DUNJANA N, SANGANYADO E. Sci. Total Environ., 2018, 636:299-313.
-
[9]
-
[10]
MOOR C, LYMBEROPOULOU T, DIETRICH V J. Microchim. Acta, 2001, 136(3-4):123-128.
-
[11]
LI F, XU L, YOU T Y, LU A X. Comput. Electron. Agric., 2021, 187:106257.
-
[12]
WANG F, ZHANG G. Appl. Spectrosc., 2011, 65(3):315-319.
-
[13]
-
[14]
-
[15]
HAHN D W, OMENETTO N. Appl. Spectrosc., 2012, 66(4):347-419.
-
[16]
DE LUCIA F C, GOTTFRIED J L, MUNSON C A, MIZIOLEK A W. Spectrochim. Acta, Part B, 2007, 62(12):1399-1404.
-
[17]
HASSANIMATIN M M, TAVASSOLI S H, NOSRATI Y, SAFI A. Phys. Plasmas, 2019, 26(3):033303.
-
[18]
LIU Y, BOUSQUET B, BAUDELET M, RICHARDSON M. Spectrochim. Acta, Part B, 2012, 73:89-92.
-
[19]
POPOV A M, COLAO F, FANTONI R. J. Anal. At. Spectrom., 2009, 24(5):602-604.
-
[20]
LI Y, HU C H, ZHANG H Z, JIANG Z K, LI Z S. Appl. Opt., 2009, 48(4):B105-B110.
-
[21]
DELL'AGLIO M, ALRIFAI R, DE GIACOMO A. Spectrochim. Acta, Part B, 2018, 148:105-112.
-
[22]
TAVASSOLI S H, KHALAJI M. J. Appl. Phys., 2008, 103(8):083118.
-
[23]
PENG X X, WANG Z. Anal. Chem., 2019, 91(15):10073-10080.
-
[24]
DENG Q S, YANG C, ZHENG H T, LIU J X, MAO X F, HU S H, ZHU Z L. J. Anal. At. Spectrom., 2019, 34(9):1786-1793.
-
[25]
HE J, LIU Y B, PAN C Y, DU X W. Appl. Spectrosc., 2019, 73(10):1201-1207.
-
[26]
ZHU Z L, YANG C, YU P W, ZHENG H T, LIU Z F, XING Z, HU S H. J. Anal. At. Spectrom., 2019, 34(2):331-337.
-
[27]
QIAN L, LEI Z, PENG X, YANG G, WANG Z. Anal. Chim. Acta, 2021, 1162:338495.
-
[28]
GE F, GAO L, PENG X, LI Q, ZHU Y, YU J, WANG Z. Talanta, 2020, 218:121119.
-
[29]
CARADO A J, QUARLES C D, DUFFIN A M, BARINAGA C J, RUSSO R E, MARCUS R K, EIDEN G C, KOPPENAAL D W. J. Anal. At. Spectrom., 2012, 27(3):385-389.
-
[30]
REN L, HAO X J, TANG H J, SUN Y K. Results Phys., 2019, 15:102798.
-
[31]
WANG Z, HOU Z Y, LUI S L, JIANG D, LIU J M, LI Z. Opt. Express, 2012, 20(23):A1011-A1018.
-
[1]
-
-
-
[1]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[2]
Zian Fang , Qianqian Wen , Yidi Wang , Hongxia Ouyang , Qi Wang , Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032
-
[3]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[4]
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
-
[5]
Tao Cao , Fang Fang , Nianguang Li , Yinan Zhang , Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098
-
[6]
Siyao Zhan , Yajiao Wang , Zhihuan Cai , Ayizhada Maimaitiyumier , Tilan Duan , Xiangfeng Wei , Qi Wang , Jiehua Liu , Xianghua Kong . Exploration of the Chemical Elements across Time and Space. University Chemistry, 2024, 39(9): 5-10. doi: 10.12461/PKU.DXHX202403071
-
[7]
Xiangli Wang , Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092
-
[8]
Mei Yan , Rida Feng , Yerdos·Tohtarkhan , Biao Long , Li Zhou , Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103
-
[9]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[10]
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
-
[11]
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
-
[12]
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
-
[13]
Yonghui Wang , Weilin Chen , Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102
-
[14]
Huan Zhang , Linyu Pu , Wei Wang , Yatang Dai , Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010
-
[15]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[16]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[17]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[18]
Yan Li , Fei Ding , Jing Wang , Jing Nan , Yijun Li , Xiaohang Qiu . Give a Man a Fish, and Teach a Man to Fish: Self-Designed Instrumental Analysis Experiments and Integration of Ideological and Political Elements. University Chemistry, 2024, 39(2): 208-213. doi: 10.3866/PKU.DXHX202310097
-
[19]
Yajun Jian , Quanguo Zhai , Quan Gu , Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006
-
[20]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[1]
Metrics
- PDF Downloads(11)
- Abstract views(284)
- HTML views(17)