Citation: LI Yue,  ZHANG Guo-Xia,  CAI Zhao-Qing,  QIU Han-Xun,  WANG Zheng. Atmospheric Pressure Glow Discharge Combined with Cylindrical Confinement Enhanced Laser-Induced Breakdown Spectroscopy for Determination of Rare Earth in Soil[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(9): 1384-1390. doi: 10.19756/j.issn.0253-3820.221100 shu

Atmospheric Pressure Glow Discharge Combined with Cylindrical Confinement Enhanced Laser-Induced Breakdown Spectroscopy for Determination of Rare Earth in Soil

  • Corresponding author: QIU Han-Xun,  WANG Zheng, 
  • Received Date: 25 February 2022
    Revised Date: 26 May 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.E27GJ616), the Technical Innovation Project of Instrument and Equipment Function Development of Chinese Academy of Sciences (No. E07YQ7170G) and the Shanghai Technical Platform for Testing and Characterization on Inorganic Materials (No.19DZ2290700).

  • Rare earth pollution in soil affects plant growth and accumulates in animals and humans through the food chain, and causes serious environmental and human health issues. To take effective measures to control the rare earth pollution, it is necessary to detect the content of rare earth elements in soil. Laser-induced breakdown spectroscopy (LIBS) has many advantages including in-situ, non-destructive, real-time and multi-element simultaneous analysis for solid samples such as soil. However, the sensitivity of this technique is low, which limits its application in the quantitative analysis of trace elements. In this work, a new method utilizing the combination of atmospheric pressure glow discharge (APGD) and cylindrical confinement (CC) was proposed to improve the detection sensitivity of laser-induced breakdown spectroscopy, which was applied to determination of Y, La, Eu, Yb and Lu rare earth elements in soil. The results showed that the detection sensitivity of LIBS for Y, La, Eu, Yb and Lu were enhanced by 11.6, 9.3, 7.9, 8.2 and 7.6 times by APGD and CC, respectively. To verify the accuracy of the proposed system, it was applied to the detection of soil certified reference materials and an unknown soil sample, and the relative errors between the detection values of this work and those of ICP-OES were 1.5%-8.6% and 1.8%-7.0%, respectively.
  • 加载中
    1. [1]

      WANG L Q, LIANG T. Sci. Rep., 2015, 5:12483.

    2. [2]

      GOODENOUGH K M, WALL F, MERRIMAN D. Nat. Resour. Res., 2018, 27(2):201-216.

    3. [3]

      DINALI G S, ROOT R A, AMISTADI M K, CHOROVER J, LOPES G, GUILHERME L R G. Environ. Int., 2019, 128:279-291.

    4. [4]

      SABBIONI E, PIETRA R, GAGLIONE P, VOCATURO G, COLOMBO F, ZANONI M, RODI F. Sci. Total Environ., 1982, 26(1):19-32.

    5. [5]

      DOLEGOWSKA S, MIGASZEWSKI Z M. Environ. Pollut., 2013, 178:33-40.

    6. [6]

      CHEN H B, CHEN Z B, CHEN Z Q, OU X L, CHEN J J. Bull. Environ. Contam. Toxicol., 2020, 104(5):582-587.

    7. [7]

      LI X F, CHEN Z B, CHEN Z Q, ZHANG Y H. Chemosphere, 2013, 93(6):1240-1246.

    8. [8]

      GWENZI W, MANGORI L, DANHA C, CHAUKURA N, DUNJANA N, SANGANYADO E. Sci. Total Environ., 2018, 636:299-313.

    9. [9]

    10. [10]

      MOOR C, LYMBEROPOULOU T, DIETRICH V J. Microchim. Acta, 2001, 136(3-4):123-128.

    11. [11]

      LI F, XU L, YOU T Y, LU A X. Comput. Electron. Agric., 2021, 187:106257.

    12. [12]

      WANG F, ZHANG G. Appl. Spectrosc., 2011, 65(3):315-319.

    13. [13]

    14. [14]

    15. [15]

      HAHN D W, OMENETTO N. Appl. Spectrosc., 2012, 66(4):347-419.

    16. [16]

      DE LUCIA F C, GOTTFRIED J L, MUNSON C A, MIZIOLEK A W. Spectrochim. Acta, Part B, 2007, 62(12):1399-1404.

    17. [17]

      HASSANIMATIN M M, TAVASSOLI S H, NOSRATI Y, SAFI A. Phys. Plasmas, 2019, 26(3):033303.

    18. [18]

      LIU Y, BOUSQUET B, BAUDELET M, RICHARDSON M. Spectrochim. Acta, Part B, 2012, 73:89-92.

    19. [19]

      POPOV A M, COLAO F, FANTONI R. J. Anal. At. Spectrom., 2009, 24(5):602-604.

    20. [20]

      LI Y, HU C H, ZHANG H Z, JIANG Z K, LI Z S. Appl. Opt., 2009, 48(4):B105-B110.

    21. [21]

      DELL'AGLIO M, ALRIFAI R, DE GIACOMO A. Spectrochim. Acta, Part B, 2018, 148:105-112.

    22. [22]

      TAVASSOLI S H, KHALAJI M. J. Appl. Phys., 2008, 103(8):083118.

    23. [23]

      PENG X X, WANG Z. Anal. Chem., 2019, 91(15):10073-10080.

    24. [24]

      DENG Q S, YANG C, ZHENG H T, LIU J X, MAO X F, HU S H, ZHU Z L. J. Anal. At. Spectrom., 2019, 34(9):1786-1793.

    25. [25]

      HE J, LIU Y B, PAN C Y, DU X W. Appl. Spectrosc., 2019, 73(10):1201-1207.

    26. [26]

      ZHU Z L, YANG C, YU P W, ZHENG H T, LIU Z F, XING Z, HU S H. J. Anal. At. Spectrom., 2019, 34(2):331-337.

    27. [27]

      QIAN L, LEI Z, PENG X, YANG G, WANG Z. Anal. Chim. Acta, 2021, 1162:338495.

    28. [28]

      GE F, GAO L, PENG X, LI Q, ZHU Y, YU J, WANG Z. Talanta, 2020, 218:121119.

    29. [29]

      CARADO A J, QUARLES C D, DUFFIN A M, BARINAGA C J, RUSSO R E, MARCUS R K, EIDEN G C, KOPPENAAL D W. J. Anal. At. Spectrom., 2012, 27(3):385-389.

    30. [30]

      REN L, HAO X J, TANG H J, SUN Y K. Results Phys., 2019, 15:102798.

    31. [31]

      WANG Z, HOU Z Y, LUI S L, JIANG D, LIU J M, LI Z. Opt. Express, 2012, 20(23):A1011-A1018.

  • 加载中
    1. [1]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    2. [2]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    3. [3]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    4. [4]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    5. [5]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    6. [6]

      Siyao Zhan Yajiao Wang Zhihuan Cai Ayizhada Maimaitiyumier Tilan Duan Xiangfeng Wei Qi Wang Jiehua Liu Xianghua Kong . Exploration of the Chemical Elements across Time and Space. University Chemistry, 2024, 39(9): 5-10. doi: 10.12461/PKU.DXHX202403071

    7. [7]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    8. [8]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    9. [9]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    10. [10]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    11. [11]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    12. [12]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    13. [13]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    14. [14]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    15. [15]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    16. [16]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    17. [17]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    18. [18]

      Yan Li Fei Ding Jing Wang Jing Nan Yijun Li Xiaohang Qiu . Give a Man a Fish, and Teach a Man to Fish: Self-Designed Instrumental Analysis Experiments and Integration of Ideological and Political Elements. University Chemistry, 2024, 39(2): 208-213. doi: 10.3866/PKU.DXHX202310097

    19. [19]

      Yajun Jian Quanguo Zhai Quan Gu Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006

    20. [20]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

Metrics
  • PDF Downloads(11)
  • Abstract views(285)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return