Citation: RUAN Li-Ting,  HE Shao-Ying,  ZHAO Wan,  CAO Hong-Shuai,  XU Zhi-Ai,  ZHANG Wen. Cerium Vanadate-based Peroxidase-like Nanozyme for Glucose and Total Antioxidant Capacity Assay[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(9): 1319-1327. doi: 10.19756/j.issn.0253-3820.221099 shu

Cerium Vanadate-based Peroxidase-like Nanozyme for Glucose and Total Antioxidant Capacity Assay

  • Corresponding author: ZHANG Wen, wzhang@chem.ecnu.edu.cn
  • Received Date: 24 February 2022
    Revised Date: 13 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.22174047).

  • The cerium vanadate (CeVO4)-based nanozyme was synthesized through a hydrothermal synthesis method with arginine as the stabilizer. Due to the change of stabilizer, the ratio of Ce to Ce in CeVO4 changed and thus allowed that the nanozyme showed nanoparticle morphology, which was different from that of nanorod prepared with EDTA as stabilizer. In the reaction system of 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2), the CeVO4-based nanozyme first catalyzed H2O2 to produce hydroxyl radical (·OH), which could oxidize TMB and thus resulted in a colour change of solution from colourless to blue, proving that CeVO4 prepared with arginine had strong peroxidase-like activity and the generation of ·OH accounted for the outstanding peroxidase-like properties. Based on these features, a colorimetric method was developed for detecting H2O2, glucose and antioxidants. This study not only provided a new direction for the research of CeVO4-based nanozyme, but also developed a fast and simple method for total antioxidant capacity (TAC) assay.
  • 加载中
    1. [1]

      BENKOVIC S J, HAMMES-SCHIFFER S. Science, 2003, 301(5637):1196-1202.

    2. [2]

      BEAUDRY A A, JOYCE G F. Science, 1992, 257(5070):635-641.

    3. [3]

      WEI H, GAO L, FAN K, LIU J, HE J, QU X, DONG S, WANG E, YAN J. Nano Today, 2021, 40:101269.

    4. [4]

      FAN K, CAO C, PAN Y, LU D, YANG D L, FENG J, SONG L N, LIANG M M, YAN X Y. Nat. Nanotechnol., 2012, 7(7):459-464.

    5. [5]

      HE W, ZHOU Y, WAMER W G, HU X, WU X, ZHENG Z. Biomaterials, 2013, 34(3):765-773.

    6. [6]

      JIN L, DONG Y, WU X, CAO G, WANG G. Anal. Chem., 2015, 87(20):10429-10436.

    7. [7]

      LIU Y, ZHOU M, CAO W, WANG X, WANG Q, LI S, WEI H. Anal. Chem., 2019, 91(13):8170-8175.

    8. [8]

      MANEA F, HOUILLON F B, PASQUATO L, SCRIMIN P. Angew. Chem., Int. Ed., 2004, 43(45):6165-6169.

    9. [9]

      NATALIO F, ANDRE R, HARTOG A F, STOLL B, JOCHUM K P, WEVER R, TREMEL W. Nat. Nanotechnol., 2012, 7(8):530-535.

    10. [10]

      SOH M, KANG D W, JEONG H G, KIM D, KIM D Y, YANG W, SONG C, BAIK S, CHOI I Y, KI S K. Angew. Chem., Int. Ed., 2017, 56(38):11399-11403.

    11. [11]

      SONG Y, QU K, ZHAO C, REN J, QU X. Adv. Mater., 2010, 22(19):2206-2210.

    12. [12]

      SUN H, ZHOU Y, REN J, QU X. Angew. Chem., Int. Ed., 2018, 57(30):9224-9237.

    13. [13]

      TARNUZZER R W, COLON J, PATIL S, SEAL S. Nano Lett., 2005, 5(12):2573-2577.

    14. [14]

      WANG X, GAO X, QIN L, WANG C, SONG L, ZHOU Y, ZHU G, CAO W, LIN S, ZHOU L. Nat. Commun., 2019, 10:704.

    15. [15]

      ZHANG W, HU S, YIN J, HE W, LU W, MA M, GU N, ZHANG Y. J. Am. Chem. Soc., 2016, 138(18):5860-5865.

    16. [16]

      DUAN D, FAN K, ZHANG D, TAN S, LIANG M, LIU Y, ZHANG J, ZHANG P, LIU W, QIU X. Biosens. Bioelectron., 2015, 74:134-141.

    17. [17]

      ZHU Y, WU J, HAN L, WANG X, LI W, GUO H, WEI H. Anal. Chem., 2020, 92(11):7444-7452.

    18. [18]

      LIN J, WANG Q, WANG X, ZHU Y, ZHOU X, WEI H. Analyst, 2020, 145:3916-3921.

    19. [19]

      WEERATHUNGE P, RAMANATHAN R, SHARMA T K, BANSAL V. Anal. Chem., 2014, 86(24):11937-11941.

    20. [20]

      WU G, HE S, PENG H, DENG H, LIU A, LIN H, XIA H, CHEN W. Anal. Chem., 2014, 86(21):10955-10960.

    21. [21]

      CHEN J, SUN Y, LI H, HU X. Talanta, 2018, 189:254-261.

    22. [22]

      ORTIZ-GOMEZ I, SALINAS-CASTILLO A, GARCIA A G, ALVAREZ-BERMEJO J A, DE ORBE-PAYA I, RODRIGUEZ-DIEGUEZ A, CAPITAN-VALLVEY L F. Microchim. Acta, 2018, 185:47.

    23. [23]

      XI J, ZHU C, WANG Y, ZHANG Q, FAN L. RSC Adv., 2019, 9:16509.

    24. [24]

      JIAO A, XU L, TIAN Y, CUI Q, LIU X, CHEN M. Talanta, 2021, 225:121990.

    25. [25]

      SHARMA T S K, HWA K, SANTHAN A, GANGULY A. Sens. Actuators, B, 2021, 331:129413.

    26. [26]

      KOKULNATHAN T, KARTHIK R, CHEN S, KUMAR J V, SAKTHINATHANA S. Microchim. Acta, 2019, 186:579.

    27. [27]

      DENISOVA L, CHUMILINA L, KARGIN Y F, DENISOV V. Inorg. Mater., 2016, 52:44-47.

    28. [28]

      LIU H, YANG Z. Mater. Sci. Eng., B, 2021, 269:115159.

    29. [29]

      JIN R, LIU C, SUN L, ZHANG Z, CHEN G. ChemElectroChem, 2016, 3(4):644-649.

    30. [30]

      SINGH N, MUGESH G. Angew. Chem., Int. Ed., 2019, 58(23):7797-7801.

    31. [31]

      YANG W, LING B, HU B, YIN H, MAO J, PATRICK J W. Angew. Chem., Int. Ed., 2020, 59(1):2-12.

    32. [32]

      SZYMANSKI C J, MUNUSAMY P, MIHAI C, XIE Y, HUA D, GILLES M K, ORRA G. Biomaterials, 2015, 62:147-154.

    33. [33]

      DONG H, FAN Y, ZHANG W, GU N, ZHANG Y. Bioconjugate Chem., 2019, 30(5):1273-1296.

    34. [34]

      ZHOU Y, SUN H, XU H, MATYSIAK S, QU X. Angew. Chem., Int. Ed., 2018, 57(51):16791-16795.

    35. [35]

      CHEN J, PEZZATO C, SCRIMIN P, PRINS L. Chem.-Eur. J., 2016, 22:7028-7032.

    36. [36]

      LIU J, WANG L, SUN X, ZHU X. Angew. Chem., Int. Ed., 2010, 49(20):3492-3495.

    37. [37]

      YANG H, ZHA J, ZHANG P, QIN Y, CHEN T, YE F. Sens. Actuators, B, 2017, 247:469-478.

    38. [38]

      ZHU L, LI Q, LI J, LIU X, MENG J, CAO X. Nanoparticle Res., 2007, 99:261-268.

    39. [39]

      HUANG Z, HE W, SHEN H, HAN G, WANG H, SU P, SONG J, YANG Y. Talanta, 2021, 230:122337.

    40. [40]

      GAO L, ZHANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol., 2007, 2(9):577-583.

    41. [41]

      ZHANG Y, ZHOU Z, WEN F, TAN J, PENG T, LUO B, WANG H, YIN S. Sens. Actuators, B, 2018, 275:155-162.

    42. [42]

      GE C, WU R, CHONG G, FANG X, JIANG X, PAN C, CHEN C, YIN J. Adv. Funct. Mater., 2018, 28:1801484.

    43. [43]

      SANKARARAMAKRISHINAN N, SHANKHWAR A, CHAUHAN D. Chemosphere, 2019, 228:390-397.

    44. [44]

      ZHUO S, FANG J, ZHU C, DU J. Anal. Bioanal. Chem., 2020, 412:963-972.

    45. [45]

      SHI W, ZHANG X, HE S, HUANG Y. Chem. Commun., 2011, 47:10785-10787.

    46. [46]

      SON S E, GUPTA P K, HUR W, LEE H B, PARK Y, PARK J, KIM S N, SEONG G H. ACS Appl. Nano Mater., 2021, 4(8):8282-8291.

    47. [47]

      ZENG Y, LI Y, TAN X, GONG J, WANG Z, AN Y, WANG Z, LI H. ACS Appl. Mater. Interfaces, 2021, 13(31):36816-36823.

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    5. [5]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    6. [6]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    7. [7]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    8. [8]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    9. [9]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    14. [14]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    19. [19]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    20. [20]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

Metrics
  • PDF Downloads(11)
  • Abstract views(381)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return