Citation: LIU Kai-fan,  LI Zong-jun,  CHEN Wei. Electrocatalytic Activities of Au24 and Au25 Nanoclusters for Carbon Dioxide Reduction Reaction[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(4): 593-601. doi: 10.19756/j.issn.0253-3820.221092 shu

Electrocatalytic Activities of Au24 and Au25 Nanoclusters for Carbon Dioxide Reduction Reaction

  • Corresponding author: CHEN Wei, weichen@ciac.ac.cn
  • Received Date: 22 February 2022
    Revised Date: 22 March 2022

    Fund Project: the National Natural Science Foundation of China(No. 21773224)Supported by the National Key Research and Development Plan(No. 2020YFB1506001)

  • Reduction of CO2 into useful fuels and chemicals through electrochemical catalytic processes is currently the most promising way to address CO2 emissions and utilize CO2.Herein, we report a method to use atomically well-defined gold nanoclusters Au24 NCs and Au25 NCs as catalytically active sites for electrochemical carbon dioxide electroreduction reaction (CO2RR) by supporting the as-prepared Au24 NCs and Au25 NCs on carbon substrates.The electrochemical results show that Au24 NCs/C achieves the highest CO Faradaic efficiency of 77.5%at-0.58 V, and Au25 NCs/C achieves the highest CO Faradaic efficiency of 68.9% at-0.68 V.By comparison, it can be found that the highest CO Faradaic efficiency obtained on Au24 NCs/C is 8.6% higher than that on Au25 NCs/C.Meanwhile, compared to Au25 NCs/C, the potential for the highest CO Faradaic efficiency has a positive shift of 100 mV on Au24 NCs/C.These data indicate that Au24 NCs/C has better catalytic activity than Au25 NCs/C for CO2RR, which may be attributed to the different coordination structures of the two gold clusters.Compared with Au25 NCs/C, Au24 NCs/C lacks a central atom, and therefore its peripheral ligands may be more easily to drop off from the cluster surface, resulting in more exposed Au active sites for CO2RR.This study reveals the structure effect of metal clusters on their electrocatalytic properties and is helpful for the design of high-performance and highly selective CO2RR catalysts.
  • 加载中
    1. [1]

      JIN R C, ZENG C J, ZHOU M, CHEN Y X. Chem. Rev., 2016, 116(18):10346-10413.

    2. [2]

      LU Y Z, CHEN W. J. Am. Chem. Soc., 2012, 41(9):3594-3623.

    3. [3]

      CAI X, HU W G, XU S, YANG D, CHEN M Y, SHU M, SI R, DING W P, ZHU Y. J. Am. Chem. Soc., 2020, 142(9):4141-4153.

    4. [4]

      LIU Y Y, CHAI X Q, CAI X, CHEN M Y, JIN R C, DING W P, ZHU Y. Angew. Chem., Int. Ed., 2018, 57(31):9775-9779.

    5. [5]

      ZENG C J, CHEN Y X, KIRSCHBAUM K, LAMBRIGHT K J, JIN R C. Science, 2016, 354(6319):1580-1584.

    6. [6]

      JIN R C. Nanoscale, 2010, 2(3):343-362.

    7. [7]

      LI X, TAKANO S, TSUKUDA T. J. Phys. Chem. C, 2021, 125(42):23226-23230.

    8. [8]

      ZHANG X L, ZHANG Y Y, CHENG C, YANG Z X, HERMANSSON K. Nanoscale, 2020, 12(23):12497-12507.

    9. [9]

      HASEGAWA S, TAKANO S, HARANO K, TSUKUDA T. JACS Au, 2021, 1(5):660-668.

    10. [10]

      KONG J, QIN Y H, WANG T L, WANG C W. Int. J. Hydrogen Energy, 2020, 45(51):27254-27262.

    11. [11]

      XU J Y, XU S, CHEN M Y, ZHU Y. Nanoscale, 2020, 12(10):6020-6028.

    12. [12]

      ZHUANG S L, CHEN D, LIAO L W, ZHAO Y, XIA N, ZHANG W H, WANG C M, YANG J, WU Z K. Angew.Chem., Int. Ed., 2020, 59(8):3073-3077.

    13. [13]

      ZHUANG Z H, CHEN W. Analyst, 2020, 145(7):2621-2630.

    14. [14]

      ZHANG J W, LI H, LI J Q, CHEN Y, QU P, ZHAI Q G. Dalton Trans., 2021, 50(47):17482-17486.

    15. [15]

      WANG P, HUANG C H, CHEN X L, LU C Z. Chin. J. Struct. Chem., 2021, 40(11):1489-1495.

    16. [16]

      HESARI M, DING Z F. Acc. Chem. Res., 2017, 50(2):218-230.

    17. [17]

      KHAN R W, NAVEEN M H, BANG J H. ACS Energy Lett., 2021, 6(8):2713-2725.

    18. [18]

      LEES E W, MOWBRAY B A W, PARLANE F G L, BERLINGUETTE C P. Nat. Rev. Mater., 2022, 7(1):55-64.

    19. [19]

      ZHAO S, JIN R X, JIN R C. ACS Energy Lett., 2018, 3(2):452-462.

    20. [20]

      ZHU W L, MICHALSKY R, METIN O, LV H F, GUO S J, WRIGHT C J, SUN X L, PETERSON A A, SUN S H. J.Am. Chem. Soc., 2013, 135(45):16833-16836.

    21. [21]

      MISTRY H, RESKE R, ZENG Z. H, ZHAO Z J, GREELEY J, STRASSER P, ROLDAN C B. J. Am. Chem. Soc., 2014,136(47):16473-16476.

    22. [22]

      ZHU W L, ZHANG Y J, ZHANG H Y, LV H F, LI Q, MICHALSKY R, PETERSON A A, SUN S H. J. Am. Chem.Soc., 2014, 136(46):16132-16135.

    23. [23]

      FU J J, ZHU W L, CHEN Y, YIN Z Y, LI Y Y, LIU J, ZHANG H Y, ZHU J J, SUN S H. Angew. Chem., Int. Ed., 2019,58(40):14100-14103.

    24. [24]

      WELCH A J, DUCHENE J S, TAGLIABUE G, DAVOYAN A, CHENG W H, ATWATER H A. ACS Appl. Energy Mater., 2019, 2(1):164-170.

    25. [25]

      ZHAO S, AUSTIN N, LI M, SONG Y B, HOUSE S D, BERNHARD S, YANG J C, MPOURMPAKIS G, JIN R C.ACS Catal., 2018, 8(6):4996-5001.

    26. [26]

      LI S T, NAGARAJAN A V, ALFONSO D R, SUN M K, KAUFFMAN D R, MPOURMPAKIS G, JIN R C. Angew.Chem., Int. Ed., 2021, 60(12):6351-6356.

    27. [27]

      QIN L B, SUN F, MA X S, MA G Y, TANG Y, WANG L K, TANG Q, JIN R C, TANG Z H. Angew. Chem., Int. Ed.,2021, 60(50):26136-26141.

    28. [28]

      ALFONSO D R, KAUFFMAN D, MATRANGA C. J. Chem. Phys., 2016, 144(18):184705.

    29. [29]

      CAI X, SARANYA G, SHEN K Q, CHEN M Y, SI R, DING W P, ZHU Y. Angew. Chem., Int. Ed., 2019, 58(29):9964-9968.

    30. [30]

      DAS A, LI T, NOBUSADA K, ZENG Q, ROSI N L, JIN R. J. Am. Chem. Soc., 2012, 134(50):20286-20289.

    31. [31]

      SHICHIBU Y, NEGISHI Y, WATANABE T, CHAKI N K, KAWAGUCHI H, TSUKUDA T. J. Phys. Chem. C, 2007,111(22):7845-7847.

    32. [32]

      NEGISHI Y, NOBUSADA K, TSUKUDA T J. Am. Chem. Soc., 2005, 127(14):5261-5270.

    33. [33]

      GAO S, LIN Y, JIAO X C, SUN Y F, LUO Q Q, ZHANG W H, LI D Q, YANG J L, XIE Y. Nature, 2016, 529(7584):68-71.

    34. [34]

      LU Y Z, ZHANG C M, LI X K, FROJD A R, XING W, CLAYBORNE A Z, CHEN W. Nano Energy, 2018, 50:316-322.

  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    3. [3]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    4. [4]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    6. [6]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    7. [7]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    8. [8]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

Metrics
  • PDF Downloads(14)
  • Abstract views(596)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return