Citation: CUI Ru-wen,  FENG Tao-tao,  GAO Nan,  ZHANG Mei-ning. Preparation of Conductive Poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate) Hydrogel by One-step Method for Electrochemical Sensor[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 859-868. doi: 10.19756/j.issn.0253-3820.221091 shu

Preparation of Conductive Poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate) Hydrogel by One-step Method for Electrochemical Sensor

  • Corresponding author: ZHANG Mei-ning, mnzhang@ruc.edu.cn
  • Received Date: 22 February 2022
    Revised Date: 25 March 2022

    Fund Project: Supported by the National Natural Science Foundation of China(Nos. 21874152, 22174162).

  • Conducting polymers-based hydrogels, especially poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have received increasing attention in the fields of bioelectronics and biosensors. However, current preparation methods of PEDOT:PSS hydrogel mostly use non-conductive hydrogel as a pre-template or severe treatment condition, which greatly limits the electrochemical biosensing application of hydrogels. Herein, we report a novel method for preparing PEDOT:PSS hydrogel. The PEDOT:PSS aqueous solution containing ethylene glycol is treated by vacuum drying,then the stable PEDOT:PSS hydrogel with three-dimensional cross-linking network is obtained by swelling. The prepared PEDOT:PSS hydrogel with micro/nano hierarchical pores and three-dimensional conductive network structure, has high conductivity(3321.33 ±129.41 S/m) and high stability in 2 months.The hydrogel-modified electrode not only has good property of heterogeneous electron transfer and mass transfer ability, but also can effectively resist non-specific adsorption of protein more than 1 month.The PEDOT:PSS hydrogel can stably entrap enzyme and maintain its activity, and the initial signal of the enzyme can be maintained more than 90% after 1 month. Therefore, the hydrogel provides a new strategy for constructing electrochemical sensors to detect interested substances in complex biological samples.
  • 加载中
    1. [1]

      XIAO T, WU F, HAO J, ZHANG M, YU P, MAO L. Anal. Chem., 2017, 89(1):300-313.

    2. [2]

      JIANG Y, YANG Y, SHEN L, MA J, MA H, ZHU N. Anal. Chem., 2022, 94(1):297-311.

    3. [3]

      WANG L, ZHANG Q, CHEN S, XU F, CHEN S, JIA J, TAN H, HOU H, SONG Y. Anal. Chem., 2014, 86(3):1414-1421.

    4. [4]

      LU X, CHENG H, HUANG P, YANG L, YU P, MAO L. Anal. Chem., 2013, 85(8):4007-4013.

    5. [5]

      LI R, LIU X, QIU W, ZHANG M. Anal. Chem., 2016, 88(15):7769-7776.

    6. [6]

      DEL RIO J S, HENRY O Y F, JOLLY P, INGBER D E. Nat. Nanotechnol., 2019, 14(12):1143-1149.

    7. [7]

      WANG J, LI J, LI Y, ZHANG Z, WANG L, WANG D, SU L, ZHANG X, TANG B. Chem. Sci., 2020, 11(25):6472-6478.

    8. [8]

      JIANG C, WANG G, HEIN R, LIU N, LUO X, DAVIS J J. Chem. Rev., 2020, 120(8):3852-3889.

    9. [9]

      FENG T, JI W, ZHANG Y, WU F, TANG Q, WEI H, MAO L, ZHANG M. Angew. Chem., Int. Ed., 2020, 59(52):23445-23449.

    10. [10]

      FENG T, JI W, TANG Q, WEI H, ZHANG S, MAO J, ZHANG Y, MAO L, ZHANG M. Anal. Chem., 2019, 91(16):10786-10791.

    11. [11]

      LIU X, XIAO T, WU F, SHEN M, ZHANG M, YU H H, MAO L. Angew. Chem., Int. Ed., 2017, 56(39):11802-11806.

    12. [12]

      ZHENG Y, HU T, CHEN C, YANG F, YANG X. Chem. Commun., 2015, 51(26):5645-5648.

    13. [13]

      JENNER L P, BUTT J N. Curr. Opin. Electrochem., 2018, 8:81-88.

    14. [14]

      LIN Y, YU P, HAO J, WANG Y, OHSAKA T, MAO L. Anal. Chem., 2014, 86(8):3895-3901.

    15. [15]

      WANG X, LI Q, XU J, WU S, XIAO T, HAO J, YU P, MAO L. Anal. Chem., 2016, 88(11):5885-5891.

    16. [16]

      LI X, YU P, YANG L, WANG F, MAO L. Anal. Chem., 2012, 84(21):9416-9421.

    17. [17]

      VO R, HSU H H, JIANG X. Biomater. Sci., 2021, 9(1):23-37.

    18. [18]

      WANG S, ZHENG H, ZHOU L, CHENG F, LIU Z, ZHANG H, WANG L, ZHANG Q. Nano Lett., 2020, 20(7):5149-5158.

    19. [19]

      XU T, JI W, WANG X, ZHANG Y, ZENG H, MAO L, ZHANG M. Angew. Chem., Int. Ed., 2022, 61(16):e202115074

    20. [20]

      WEN Y, XU J. J. Polym. Sci. Pol. Chem., 2017, 55(7):1121-1150.

    21. [21]

      SMITH S K, LUGO-MORALES L Z, TANG C, GOSRANI S P, LEE C A, ROBERTS J G, MORTON S W, MCCARTY G S, KHAN S A, SOMBERS L A. ChemPhysChem, 2018, 19(10):1197-1204.

    22. [22]

      ZHU N, ULSTRUP J, CHI Q. J. Mater. Chem. B, 2015, 3(41):8133-8142.

    23. [23]

      XU F, REN S, LI J, BI X, GU Y. Sensors, 2018, 18(6):1823.

    24. [24]

      ABIDIAN M R, MARTIN D C. Adv. Funct. Mater., 2009, 19(4):573-585.

    25. [25]

    26. [26]

      WANG L, ZHANG Y, LI X, XIE Y, HE J, YU J, SONG Y. Sci. Rep., 2015, 5:14341.

    27. [27]

      QIU W, XU M, LI R, LIU X, ZHANG M. Anal. Chem., 2016, 88(2):1117-1122.

    28. [28]

      FEIG V R, TRAN H, LEE M, LIU K, HUANG Z, BEKER L, MACKANIC D G, BAO Z. Adv. Mater., 2019, 31(39):1902869.

    29. [29]

      YAO B, WANG H, ZHOU Q, WU M, ZHANG M, LI C, SHI G. Adv. Mater., 2017, 29(28):1700974.

    30. [30]

      LU B, YUK H, LIN S, JIAN N, QU K, XU J, ZHAO X. Nat. Commun., 2019, 10:1043.

    31. [31]

      OUYANG J, XU Q, CHU C, YANG Y, LI G, SHINAR J. Polymer, 2004, 45(25):8443-8450.

    32. [32]

    33. [33]

      SHI H, LIU C, JIANG Q, XU J. Adv. Electron. Mater., 2015, 1(4):1500017.

    34. [34]

      PAN L, YU G, ZHAI D, LEE H R, ZHAO W, LIU N, WANG H, TEE B C K, SHI Y, CUI Y, BAO Z. Proc. Natl.Acad. Sci. U. S. A., 2012, 109(24):9287-9292.

    35. [35]

      ZHAI D, LIU B, SHI Y, PAN L, WANG Y, LI W, ZHANG R, YU G. ACS Nano, 2013, 7(4):3540-3546.

    36. [36]

      MA C, ZHANG Y, LIU Q, DU Y, WANG E. Anal. Chem., 2020, 92(7):5319-5328.

    37. [37]

      LIN Y, LIU K, YU P, XIANG L, LI X, MAO L. Anal. Chem., 2007, 79(24):9577-9583.

    38. [38]

      WANG J, WANG Y, CUI M, XU S, LUO X. Microchim. Acta, 2017, 184(2):483-489.

  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    4. [4]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    5. [5]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    6. [6]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    7. [7]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    8. [8]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    9. [9]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    10. [10]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    11. [11]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    16. [16]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    19. [19]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    20. [20]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

Metrics
  • PDF Downloads(69)
  • Abstract views(1519)
  • HTML views(313)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return