Citation: NIU Xiang-Heng,  WANG Meng-Zhu,  HU Pan-Wang,  LIU Bang-Xiang. A Ratiometric Electroanalytical Method Based on Diazotization Reaction for Detection of Nitrite[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 869-877. doi: 10.19756/j.issn.0253-3820.221083 shu

A Ratiometric Electroanalytical Method Based on Diazotization Reaction for Detection of Nitrite

  • Corresponding author: NIU Xiang-Heng, niuxiangheng@ujs.edu.cn
  • Received Date: 20 February 2022
    Revised Date: 3 March 2022

    Fund Project: Supported by the Key Laboratory of Functional Molecular Solids, Ministry of Education(No. FMS202001) and the National Natural Science Foundation of China(No. 21605061).

  • Excessive nitrite in food and water can cause many hazards to human health and the environment, therefore, it is very important to develop reliable, convenient and low-cost methods for nitrite detection. In this study, o-phenylenediamine(OPD) was used as a probe to develop a convenient ratiometric electrochemical method to realize high-performance detection of nitrite on bare screen-printed electrodes. The OPD probe could produce an oxidation signal at a low potential, and nitrite could produce another oxidation signal at a high potential. When OPD coexisted with nitrite, a diazotization reaction occurred in the acidic environment. With the increase of nitrite, free OPD decreased due to reaction consumption, resulting in the decreasing oxidation signal of the probe, while the oxidation signal of nitrite was gradually increased. Based on this principle, ratiometric electrochemical measurement of nitrite was achieved with a linear range of 10-300 μmol/L and a detection limit of 4.7 μmol/L. Accurate determination of the target in environmental water and pickle water samples was also demonstrated. The ratiometric electrochemical method with excellent sensitivity and accuracy, strong anti-interference ability, simple operation and low cost showed broad application prospects.
  • 加载中
    1. [1]

      WARTHESEN J J, SCANLAN R A, BILLS D D, LIBBEY L M. J. Agric. Food Chem., 1975, 23(5):898-902.

    2. [2]

      KIM-SHAPIRO D B, GLADWIN M T, PATEL R P, HOGG N. J. Inorg. Biochem., 2005, 99(1):237-246.

    3. [3]

      World Health Organization, Guidelines for Drinking-water Quality, 2011, 216:303-304.

    4. [4]

      WANG Q H, YU L J, LIU Y, LIN L, LU R G, ZHU J P, HE L, LU Z L. Talanta, 2017, 165:709-720.

    5. [5]

      KODAMATANI H, YAMAZAKI S, SAITO K, TOMIYASU T, KOMATSU Y. J. Chromatogr. A, 2009, 1216:3163-3167.

    6. [6]

      HE L J, ZHANG K G, WANG C J, LUO X L, ZHANG S S. J. Chromatogr. A, 2011, 1218:3595-3600.

    7. [7]

      HELALEH M I H, KORENAGA T. J. Chromatogr. B, 2000, 744:433-437.

    8. [8]

      DANIEL W L, HAN M S, LEE J S, MIRKIN C A. J. Am. Chem. Soc., 2009, 131(18):6362-6363.

    9. [9]

      TAWEEKARN T, WONGNIRAMAIKUL W, LIMSAKUL W, SRIPROM W, PHAWACHALOTORN C, CHOODUM A. Microchim. Acta, 2020, 187(12):643.

    10. [10]

      CHEN Y Y, ZHAO C X, YUE G Z, YANG Z P, WANG Y Y, RAO H B, ZHANG W, JIN B, WANG X X. Food Chem., 2020, 317:126361.

    11. [11]

      LO H S, LO K W, YEUNG C F, WONG C Y. Anal. Chim. Acta, 2017, 990:135-140.

    12. [12]

      XIONG Y M, LI M M, LIU H Q, XUAN Z H, YANG J, LIU D B. Nanoscale, 2017, 9(5):1811-1815.

    13. [13]

      KUMAR V V, ANTHONY S P. Anal. Chim. Acta, 2014, 842:57-62.

    14. [14]

      ZHANG H J, QI S D, DONG Y L, CHEN X J, XU Y Y, MA Y H, CHEN X G. Food Chem., 2014, 151:429-434.

    15. [15]

      ZHANG H M, KANG S H, WANG G Z, ZHANG Y X, ZHAO H J. ACS Sens., 2016, 1(7):875-881.

    16. [16]

      REN H H, FAN Y, WANG B, YU L P. J. Agric. Food Chem., 2018, 66(33):8851-8858.

    17. [17]

      MENON S, VIKRAMAN A E, JESNY S, KUMAR K G. J. Fluoresc., 2016, 26(1):129-134.

    18. [18]

      LI B L, LI Y S, GAO X F. Food Chem., 2019, 274:162-169.

    19. [19]

      LIU Y N, XUE H Y, LIU J H, WANG Q Z, WANG L. Microchim. Acta, 2018, 185(2):129.

    20. [20]

      JIANG J J, FAN W J, DU X Z. Biosens. Bioelectron., 2014, 51:343-348.

    21. [21]

      ZHU W X, ZHANG Y, GONG J D, MA Y Y, SUN J, LI T, WANG J L. ACS Sens., 2019, 4(11):2980-2987.

    22. [22]

      KOZUB B R, REES N V, COMPTON R G. Sens. Actuators, B, 2010, 143(2):539-546.

    23. [23]

      ZHU N N, XU Q, LI S N, GAO H. Electrochem. Commun., 2009, 11(12):2308-2311.

    24. [24]

      ZHOU L, WANG J P, GAI L, LI D J, LI Y B. Sens. Actuators, B, 2013, 181:65-70.

    25. [25]

      BAGHERI H, HAJIAN A, REZAEI M, SHIRZADMEHR A. J. Hazard. Mater., 2017, 324:762-772.

    26. [26]

      FU L, YU S H, THOMPSON L, YU A M. RSC Adv., 2015, 5(50):40111-40116.

    27. [27]

      ZHAO X M, LI N, JING M L, ZHANG Y F, WANG W, LIU L S, XU Z W, LIU L Y, LI F Y, WU N. Electrochim.Acta, 2019, 295:434-443.

    28. [28]

      WANG P, WANG M Y, ZHOU F Y, YANG G H, QU L L, MIAO X M. Electrochem. Commun., 2017, 81:74-78.

    29. [29]

      KUNG C W, CHANG T H, CHOU L Y, HUPP J T, FARHA O K, HO K C. Electrochem. Commun., 2015, 58:51-56.

    30. [30]

    31. [31]

      LI G L, XIA Y H, TIAN Y L, WU Y Y, LIU J, HE Q G, CHEN D C. J. Electrochem. Soc., 2019, 166(12):B881-B895.

    32. [32]

      LI X J, PING J F, YING Y B. TrAC-Trends Anal. Chem., 2019, 113:1-12.

    33. [33]

      CHEN H Y, YANG T, LIU F Q, LI W H. Sens. Actuators, B, 2019, 286:401-407.

    34. [34]

      LEE M H, KIM J S, SESSLER J L. Chem. Soc. Rev., 2015, 44(13):4185-4191.

    35. [35]

      ZIVARI-MOSHFEGH F, NEMATOLLAHI D, KHORAM M M, RAHIMI A. Electrochim. Acta, 2020, 354:136700.

    36. [36]

      WANG M Z, LIU P, ZHU H J, LIU B X, NIU X H. Biosensors, 2021, 11(8):280.

    37. [37]

      TSAI T H, THIAGARAJAN S, CHEN S M. J. Agric. Food Chem., 2010, 58(8):4537-4544.

    38. [38]

      BARHAM A S. Int. J. Electrochem. Sci., 2015, 10(6):4742-4751.

    39. [39]

      SCHINDLER S, BECHTOLD T. J. Electroanal. Chem., 2019, 836:94-101.

  • 加载中
    1. [1]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    2. [2]

      Shuhui Li Jing Wang Haitao Tang Yingming Pan . A Taste Journey with Sauerkraut. University Chemistry, 2024, 39(9): 59-63. doi: 10.12461/PKU.DXHX202404061

    3. [3]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    4. [4]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    5. [5]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    6. [6]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    7. [7]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    8. [8]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    11. [11]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    13. [13]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    14. [14]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Qijin Mo Meifang Zhuo Zhiyi Zhong Chunfang Gan Lixia Zhang . Research-Oriented Experimental Teaching in Chemistry Education at Normal University: Taking the Project of Recovering Silver Nitrate from Silver-Containing Waste as an Example. University Chemistry, 2024, 39(6): 201-206. doi: 10.3866/PKU.DXHX202310099

Metrics
  • PDF Downloads(11)
  • Abstract views(823)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return