Citation: HUANG Hui,  ZHOU Yi-Chen,  PENG Yu,  LI Xue,  ZHANG Ye,  ZHU Di. Feasibility Study of Breath Diagnosis in Helicobacter Pylori Based on Quantum Cascade Laser Mid-Infrared Spectroscopy[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(9): 1328-1335. doi: 10.19756/j.issn.0253-3820.221080 shu

Feasibility Study of Breath Diagnosis in Helicobacter Pylori Based on Quantum Cascade Laser Mid-Infrared Spectroscopy

  • Corresponding author: ZHANG Ye,  ZHU Di, 
  • Received Date: 18 February 2022
    Revised Date: 12 May 2022

    Fund Project: Supported by the Biomass Application Quantity Detection Technology and Equipment Development Project (No.2019GXRC046) and the National Natural Science Foundation of China (No.22122603).

  • Helicobacter pylori (Hp), which has proven to be a class I carcinogen of gastric cancer, can cause various gastrointestinal diseases including stomach and duodenum. The carbon-13 urea breath test (13C-UBT) is considered to be the chief choice for the initial diagnosis and confirmation of Hp infection due to its advantages such as accuracy, simplicity, non-radioactivity, and non-invasiveness. However, 13C-UBT remains to be an expensive method for detecting Hp infection owing to the high cost of testing equipment and the limited global production of 13C urea. To realize the real-time detection of Hp with high sensitivity and low cost by 13C-UBT, this study explored the feasibility of exploiting high-resolution and high-sensitivity mid-infrared quantum cascade laser spectroscopy to replace the traditional detection instruments based on mass spectrometry and near-infrared spectroscopy as Hp detection instruments. The Hp infection-positive, negative, and treated subjects were included, and the influences of sampling methods (mouth and nose) and 13C urea dosages (5, 10, 20, and 75 mg) on the diagnosis of Hp infection were investigated. The results showed that the mid-infrared quantum cascade laser spectroscopy possessed the characteristics of real-time in-situ measurement and high levels of accuracy, and the maximum measurement error was about 0.1‰-0.3‰. The results of the breath sampling methods indicated that the measured values obtained from the sampling methods of mouth and nose kept consistent (p>0.05), proving that nose air would be highly desirable as an alternative to mouth air to reduce the interference of oral flora on detection results when collecting breath samples for Hp detection. The test results of different dosages demonstrated that accurate diagnosis results could be obtained by administrating 5 mg of 13C urea, and the reagent costs could be crucially saved when compared with the current clinical 13C urea dose (75-100 mg). In conclusion, this study examined the measurement accuracy of the infrared spectrum instrument based on the quantum cascade lasers, investigated its feasibility for detecting Hp infection of the breath diagnosis, as well as optimized the breath sampling methods and suitable 13C urea dosages, which provided necessary experimental basis for subsequent mass samples detection.
  • 加载中
    1. [1]

      GRAHAM D Y. World J. Gastroenterol., 2014, 20(18):5191-5204.

    2. [2]

      LIOU J, FANG Y, CHEN C, BAIR M, CHANG C, LEE Y, CHEN M, CHEN C, TSENG C, HSU Y. Lancet, 2016, 388(10058):2355-2365.

    3. [3]

      HOOI J, LAI W Y, NG W K, SUEN M, UNDERWOOD F E, TANYINGOH D, MALFERTHEINER P, GRAHAM D Y, WONG V, WU J, CHAN F, SUNG J, KAPLAN G G, NG S C. Gastroenterology, 2017, 153(2):420-429.

    4. [4]

      MIFTAHUSSURUR M, YAMAOKA Y. Biomed. Res. Int., 2016, 2016:4819423.

    5. [5]

      ALZOUBI H, AL-MNAYYIS A, AQEL A, ABU-LUBAD M, HAMDAN O, JABER K. Diagnostics, 2020, 10(7):448.

    6. [6]

      BORDIN D S, VOYNOVAN I N, ANDREEV D N, MAEV I V. Diagnostics, 2021, 11(8):1458.

    7. [7]

      GUEVARA B, COGDILL A G. Digest Dis. Sci., 2020, 65(7):1917-1931.

    8. [8]

      BEST L M, TAKWOINGI Y, SIDDIQUE S, SELLADURAI A, GANDHI A, LOW B, YAGHOOBI M, GURUSAMY K S. Cochrane Database Syst. Rev., 2018, 3:CDO12080.

    9. [9]

      BOLTIN D, LEVI Z, PERETS T T, SCHMILOVITZ-WEISS H, GINGOLD-BELFER R, DICKMAN R, DOTAN I. Gastroent. Res. Pract., 2018, 2018:5439539.

    10. [10]

      SHEU B S, WU M S, CHIU C T, LO J C, WU D C, LIOU J M, WU C Y, CHENG H C, LEE Y C, HSU P I. Helicobacter, 2017, 22(3):e12368.

    11. [11]

      SABBAGH P, MOHAMMADNIA-AFROUZI M, JAVANIAN M, BABAZADEH A, KOPPOLU V, VASIGALA V R, NOURI H R, EBRAHIMPOUR S. Eur. J. Clin. Microbiol., 2019, 38(1):55-66.

    12. [12]

      GRAHAM D Y, MIFTAHUSSURUR M. J. Adv. Res., 2018, 13:51-57.

    13. [13]

      RICHTER V, GONZALEZ J O, HAZAN S, GOTTLIEB G, FRIEDENBERG K, GATOF D, GANESHAPPA R, DELGADO J, ABRAMOWITZ D, HARDI R. Ther. Adv. Gastrointest. Endoscopy, 2019, 12:2631774519843401.

    14. [14]

      PERETS T T, GINGOLD BELFER R, LEIBOVITZH H, ITSKOVIZ D, SCHMILOVITZ WEISS H, SNIR Y, DICKMAN R, DOTAN I, LEVI Z, BOLTIN D. J. Clin. Lab Anal., 2019, 33(2):e22674.

    15. [15]

      WANG X, ZHANG S, CHUA E G, HE Y, LI X, LIU A, CHEN H, WISE M J, MARSHALL B J, SUN D, LI X, TAY C Y. Gut Pathog., 2021, 13(1):38.

    16. [16]

      CHEN T, LIU T, LI T, ZHAO H, CHEN Q. Clin. Chim. Acta, 2021, 515:61-72.

    17. [17]

      MAITY A, BANIK G D, GHOSH C, SOM S, CHAUDHURI S, DASCHAKRABORTY S B, GHOSH S, GHOSH B, RAYCHAUDHURI A K, PRADHAN M. J. Breath Res., 2014, 8(1):16005.

    18. [18]

      VAN MASTRIGT E, REYES-REYES A, BRAND K, BHATTACHARYA N, URBACH H P, STUBBS A P, DE JONGSTE J C, PIJNENBURG M W. J. Breath Res., 2016, 10(2):26003.

    19. [19]

      DUMITRAS D C, PETRUS M, BRATU A, POPA C. Molecules, 2020, 25(7):1728.

    20. [20]

      WILSON A D. Sensors-Basel, 2018, 18(8):2613.

    21. [21]

      LOURENÇO C, TURNER C. Metabolites, 2014, 4(2):465-498.

    22. [22]

      TUTUNCU E, MIZAIKOFF B. Anal. Bioanal. Chem., 2019, 411(9):1679-1686.

    23. [23]

      STACEWICZ T, BIELECKI Z, WOJTAS J, MAGRYTA P, MIKOLAJCZYK J, SZABRA D. Opto-Electron Rev., 2016, 24(2):82-94.

    24. [24]

      VENTRILLARD I, XUEREF-REMY I, SCHMIDT M, KWOK C Y, FAIN X, ROMANINI D. Atmos. Meas. Tech., 2017, 10(5):1803-1812.

    25. [25]

    26. [26]

      VENTRILLARD I, GORROTXATEGI-CARBAJO P, ROMANINI D. Appl. Phys. B:Lasers Opt., 2017, 123(6):180.

    27. [27]

    28. [28]

      SELVARAJ R, VASA N J, NAGENDRA S M, MIZAIKOFF B. Molecules, 2020, 25(9):2227.

    29. [29]

      VAN GELDERN R, NOWAK M E, ZIMMER M, SZIZYBALSKI A, MYRTTINEN A, BARTH J A, JOST H. Anal. Chem., 2014, 86(24):12191-12198.

    30. [30]

      KANTNEROVÁ K, YU L, ZINDEL D, ZAHNISER M S, NELSON D D, TUZSON B, NAKAGAWA M, TOYODA S, YOSHIDA N, EMMENEGGER L. Rapid Commun. Mass Spectrom., 2020, 34(15):e8836.

    31. [31]

      MOLINA-MOLINA E, BONFRATE L, LORUSSO M, SHANMUGAM H, SCACCIANOCE G, ROKKAS T, PORTINCASA P. J. Gastrointest. Liver Dis., 2019, 28(2):157-161.

    32. [32]

    33. [33]

      FERWANA M, ABDULMAJEED I, ALHAJIAHMED A, MADANI W, FIRWANA B, HASAN R, ALTAYAR O, LIMBURG P J, MURAD M H, KNAWY B. World J. Gastroenterol., 2015, 21(4):1305-1314.

    34. [34]

      REYES-REYES A, HOU Z, VAN MASTRIGT E, HORSTEN R C, DE JONGSTE J C, PIJNENBURG M W, URBACH H P, BHATTACHARYA N. Opt. Express., 2014, 22(15):18299-18309.

  • 加载中
    1. [1]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    2. [2]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    3. [3]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    4. [4]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    7. [7]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    8. [8]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    9. [9]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    10. [10]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    11. [11]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    12. [12]

      Hui Liu Shupeng Zhang Yuntian Zhang Wei Dong Yuji Liu Bingxin Deng Dongping Chen Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028

    13. [13]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    14. [14]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    17. [17]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    18. [18]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    19. [19]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    20. [20]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

Metrics
  • PDF Downloads(7)
  • Abstract views(293)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return