Citation: JI Mao-Jing,  HAI Xin,  ZHOU Lu,  LIU An-Nan,  CUI Zhu-Mei,  BI Sai. raphene Quantum Dots-based Fluorescence “Turn-On” Probe for Selective Detection of Fe(Ⅱ)[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1005-1013. doi: 10.19756/j.issn.0253-3820.221076 shu

raphene Quantum Dots-based Fluorescence “Turn-On” Probe for Selective Detection of Fe(Ⅱ)

  • Corresponding author: CUI Zhu-Mei,  BI Sai, 
  • Received Date: 16 February 2022
    Revised Date: 12 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.22076087, 22004077, 81802923) and the Natural Science Foundation of Shandong Province, China (Nos.ZR2020JQ08, ZR2019MH121).

  • A "turn-on" fluorescence probe was developed based on terephthalic acid functionalized graphene quantum dots (TPA@GQDs) for highly selective detection of Fe2+. The TPA@GQDs were prepared by a one-step hydrothermal method using GO as carbon source and terephthalic acid as modifying group, where potassium hydroxide served as the cutting agent and hydrogen peroxide as the auxiliary cutting agent. The structure and component of TPA@GQDs were studied by a variety of characterization methods, and the optical properties and feasibility of TPA@GQDs as a fluorescent probe were further explored. Based on the electron-donating function of Fe2+ to induce the fluorescence enhancement of TPA@GQDs, a "turn-on" fluorescent probe was constructed for sensitive detection of Fe2+. The linear ranges were from 0.33 to 20 μmol/L and 20 to 60 μmol/L, with the limit of detection (3σ) of 0.33 μmol/L, and the corresponding linear equations were F/F0=0.0638C+1.1385 (R2=0.9974) and F/F0=0.0244C+1.9215 (R2=0.9989), respectively. Moreover, this system demonstrated good selectivity toward Fe2+, and Fe3+ had no effect on the detection of Fe2+. Finally, the proposed probe was applied to accurate determination of Fe2+ in underground water with recoveries of 98.5%-102.0%, showing broad application prospects in water quality monitoring.
  • 加载中
    1. [1]

      HIDER R C, KONG X. Dalton Trans., 2013, 42(9):3220-3229.

    2. [2]

      ZHANG Z, XUE W, YANG J, ZHAO Y, GUO J. Anal. Biochem., 2021, 623(1):114171.

    3. [3]

      JIANG M, XU S, YU Y, GAO Y, YIN Z, LI J, ZHANG X, YU H, CHEN B. Spectrochim. Acta, Part A, 2022, 264:120275.

    4. [4]

      LEE Y H, VERWILST P, KIM H S, JU J, KIM J S, KIM K. Chem. Commun., 2019, 55(81):12136-12139.

    5. [5]

    6. [6]

      LIU G, LI B, LIU Y, FENG Y, JIA D, ZHOU Y. Appl. Surf. Sci., 2019, 487:1167-1175.

    7. [7]

      ZHU Y, PAN D, HU X, HAN H, LIN M, WANG C. Sens. Actuators, B, 2017, 243:1-7.

    8. [8]

      SACMACI S, KARTAL S. Anal. Chim. Acta, 2008, 623(1):46-52.

    9. [9]

      CHEN X, JI J, SHI G, XUE Z, ZHOU X, ZHAO L, FENG S. RSC Adv., 2020, 10(54):32897-32905.

    10. [10]

      SUN Y L, ZHANG X P, ZHAO C X, LIU X, SHU Y, WANG J H, LIU N. Anal. Chim. Acta, 2021, 1183:338973.

    11. [11]

      XIA C, HAI X, CHEN X W, WANG J H. Talanta, 2017, 168:269-278.

    12. [12]

      LIU Y, TU D, ZHU H, MA E, CHEN X. Nanoscale, 2013, 5(4):1369-1384.

    13. [13]

      PACINI V A, INGALLINELLA A M, SANGUINETTI G. Water Res., 2005, 39(18):4463-4475.

    14. [14]

      DU F, CHENG Z, TAN W, SUN L, RUAN G. Spectrochim. Acta, Part A, 2020, 226:117602.

    15. [15]

      PHAN L M T, HOANG T X, CHO S. Biosensors, 2022, 12(1):41.

    16. [16]

      YAN Y, GONG J, CHEN J, ZENG Z, HUANG W, PU K, LIU J, CHEN P. Adv. Mater., 2019, 31(21):e1808283.

    17. [17]

      HAI X, LI Y, YU K, YUE S, LI Y, SONG W, BI S, ZHANG X. Chin. Chem. Lett., 2021, 32(3):1215-1219.

    18. [18]

      LI M, CHEN T, GOODING J J, LIU J. ACS Sens., 2019, 4(7):1732-1748.

    19. [19]

      TIAN P, TANG L, TENG K S, LAU S P. Mater. Today Chem., 2018, 10:221-258.

    20. [20]

      LU H T, LI W J, DONG H F, WEI M L. Small, 2019, 15(36):1902136.

    21. [21]

      ZHU X, YU J, YAN Y, SONG W, HAI X. Talanta, 2022, 236:122874.

    22. [22]

      SWEETMAN M J, HICKEY S M, BROOKS D A, HAYBALL J D, PLUSH S E. Adv. Funct. Mater., 2019, 29(14):1808740.

    23. [23]

      QI B P, HU H, BAO L, ZHANG Z L, TANG B, PENG Y, WANG B S, PANG D W. Nanoscale, 2015, 7(14):5969-5973.

    24. [24]

      LI L, WU G, YANG G, PENG J, ZHAO J, ZHU J J. Nanoscale, 2013, 5(10):4015-4039.

    25. [25]

      HAI X, ZHU X, YU K, YUE S, SONG W, BI S. Biosens. Bioelectron., 2021, 192:113544.

    26. [26]

    27. [27]

    28. [28]

      HAI X, GUO Z, LIN X, CHEN X, WANG J. ACS Appl. Mater. Interfaces, 2018, 10(6):5853-5861.

    29. [29]

      HASSAN M, HAQUE E, REDDY K R, MINETT A I, CHEN J, GOMES V G. Nanoscale, 2014, 6(20):11988-11994.

    30. [30]

      AMELIA M, FLAMINI R, LATTERINI L. Langmuir, 2010, 26(12):10129-10134.

    31. [31]

      FUENTE E, MENENDEZ J A, DIEZ M A, SUAREZ D, MONTES-MORAN M A. J. Phys. Chem. B, 2003, 107(26):6350-6359.

    32. [32]

      BINOY J, JOE I H, JAYAKUMAR V S. J. Raman Spectrosc., 2005, 36(12):1091-1100.

    33. [33]

      LI Y, ZHAO Y, CHENG H, HU Y, SHI G, DAI L, QU L. J. Am. Chem. Soc., 2012, 134(1):15-18.

    34. [34]

      PAN D, ZHANG J, LI Z, WU M. Adv. Mater., 2010, 22(6):734-738.

    35. [35]

      HAI X, WANG Y, HAO X, CHEN X, WANG J. Sens. Actuators, B, 2018, 268:61-69.

    36. [36]

      TIAN Y, WANG X, ZHANG D, SHI X, WANG S. J. Photochem. Photobiol., A, 2008, 199(2-3):224-229.

    37. [37]

      LI C, LI D, MA C, LIU Y. J. Mol. Liq., 2016, 224:83-88.

    38. [38]

      ZHUANG Z, BU F, LUO W, PENG H, CHEN S, HU R, QIN A, ZHAO Z, TANG B Z. J. Mater. Chem. C, 2017, 5(7):1836-1842.

    39. [39]

      WU Y, GUO T, SHU D, ZHANG W, LUAN F, SHI L, GUO D. Luminescence, 2018, 33(5):855-862.

    40. [40]

      CHEN T, YANG F, WU X, CHEN Y, YANG G. Carbon, 2020, 167:196-201.

    41. [41]

  • 加载中
    1. [1]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    6. [6]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    7. [7]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    8. [8]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    9. [9]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    10. [10]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    13. [13]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    14. [14]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    17. [17]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

Metrics
  • PDF Downloads(9)
  • Abstract views(844)
  • HTML views(170)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return