Citation: MA Chong-bo,  ZHOU Ming. Investigation on Catalytic Performance of Poly(vinyl alcohol) Amphiphilic Aerogel as Peroxidase Mimics and Its Application in Sensing Glucose[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(4): 535-544. doi: 10.19756/j.issn.0253-3820.221067 shu

Investigation on Catalytic Performance of Poly(vinyl alcohol) Amphiphilic Aerogel as Peroxidase Mimics and Its Application in Sensing Glucose

  • Corresponding author: ZHOU Ming, zhoum@nenu.edu.cn
  • Received Date: 10 February 2022
    Revised Date: 14 March 2022

    Fund Project: the “111” Project of China(No. B18012)the Jilin Provincial Department of Human Resources and Social Security,the Jilin Provincial Department of Education(China),the Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province(China),Analysis and Testing Center of Northeast Normal University(China)the Natural Science Foundation of Jilin Province,China(No. 212558JC010484610)Supported by the National Natural Science Foundation of China(No. 22004014)the Fundamental Research Funds for the Central Universities of China (Nos. 2412020QD007, JGPY201802, 2412020ZD006, 2412019QD008)

  • A method for synthesis of an amphiphilic aerogel with remarkable peroxidase-like activity was developed by using poly(vinyl alcohol) (PVA) as skeleton and maleic acid(MA) as auxiliary crosslinker.Large amount of carboxyl and ester groups could be exposed on aerogel surface by tuning the dosage of MA, which acted as the active sites and binding sites for the substrate material. A colorimetric method for glucose sensing by the catalyzed chromogenic reaction between 3, 3', 5, 5'-tetramethylbenzidine and H2O2, was thus established. The linear detection range of glucose in buffer system was 17.4-80.0 μmol/L, with limit of detection(3σ) of 17.4 μmol/L. While in diluted human serum, the linear detection range was 27.4 μmol/L-1.0 mmol/L, with limit of detection(3σ) of 27.4 μmol/L. This method was used in detection of glucose in human serum, with recoveries of 96.8%-103.0% and relative standard deviations of 0.8%-3.9%, and the detection results were highly consistent with those obtained from the commercial glucose meter. This study innovatively developed a three-dimensional macroscope organic aerogel as a new type of artificial enzyme, broadening the design philosophy and enriching the synthesis strategy. It was promising in construction of portable sensors by virtue of the lightness in weight and eligible mechanical properties.
  • 加载中
    1. [1]

      UNNIKRISHNAN B, LIEN C W, CHU H W, HUANG C C. J. Hazard. Mater., 2021, 401:123397.

    2. [2]

      WEI H, WANG E. Anal. Chem., 2008, 80(6):2250-2254.

    3. [3]

      LING P, ZHANG Q, CAO T, GAO F. Angew. Chem., Int. Ed., 2018, 57(23):6819-6824.

    4. [4]

      WEI H, GAO L, FAN K, LIU J, HE J, QU X, DONG S, WANG E, YAN X. Nano Today, 2021, 40:101269.

    5. [5]

      ZHANG R, YAN X, FAN K. Acc. Mater. Res., 2021, 2(7):534-547.

    6. [6]

      WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.

    7. [7]

      GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X.Nat. Nanotechnol., 2007, 2(9):577-583.

    8. [8]

      CHEN Z, JI H, LIU C, BING W, WANG Z, QU X. Angew. Chem., Int. Ed., 2016, 55(36):10732-10736.

    9. [9]

      TAO Y, JU E, REN J, QU X. Adv. Mater., 2015, 27(6):1097-1104.

    10. [10]

      DAS B, FRANCO J L, LOGAN N, BALASUBRAMANIAN P, KIM M I, CAO C. Nano-Micro Lett,, 2021, 13(1):193.

    11. [11]

      LIU M, MOU J, XU X, ZHANG F, XIA J, WANG Z. Talanta, 2020, 220:121374.

    12. [12]

      PRATSINIS A, KELESIDIS G A, ZUERCHER S, KRUMEICH F, BOLISETTY S, MEZZENGA R, LEROUX J C,SOTIRIOU G A. ACS Nano, 2017, 11(12):12210-12218.

    13. [13]

      CHENG L, WU F, BAO H, LI F, XU G, ZHANG Y, NIU W. Small, 2021, 17(47):2104083.

    14. [14]

      MANSUR A A P, LEONEL A G, KRAMBROCK K, MANSUR H S. Catal. Today, 2021, DOI:10.1016/j.cattod.2021.11.018.

    15. [15]

      OROZCO J, GARCÍA-GRADILLA V, D’AGOSTINO M, GAO W, CORTÉS A, WANG J. ACS Nano, 2013, 7(1):818-824.

    16. [16]

      HE F, MI L, SHEN Y, MORI T, LIU S, ZHANG Y. ACS Appl. Mater. Interfaces, 2018, 10(41):35327-35333.

    17. [17]

      LI S, SHANG L, XU B, WANG S, GU K, WU Q, SUN Y, ZHANG Q, YANG H, ZHANG F, GU L, ZHANG T,LIU H. Angew. Chem., Int. Ed., 2019, 58(36):12624-12631.

    18. [18]

      SHEN J, REES T W, ZHOU Z, YANG S, JI L, CHAO H. Biomaterials, 2020, 251:120079.

    19. [19]

      JIN T, LI Y L, JING W J, LI Y C, FAN L Z, LI X H. Chem. Commun., 2020, 56(4):659-662.

    20. [20]

      WEN S H, ZHONG X L, WU Y D, LIANG R P, ZHANG L, QIU J D. Anal. Chem., 2019, 91(10):6487-6497.

    21. [21]

      PRASAD S N, WEERATHUNGE P, KARIM M N, ANDERSON S, HASHMI S, MARIATHOMAS P D, BANSAL V, RAMANATHAN R. Anal. Bioanal. Chem., 2021, 413(5):1279-1291.

    22. [22]

      XI J Q, WEI G, AN L F, XU Z B, XU Z L, FAN L, GAO L Z. Nano Lett., 2020, 20(1):800-800.

    23. [23]

      SINGH N, NAVEENKUMAR S K, GEETHIKA M, MUGESH G. Angew. Chem., Int. Ed., 2021, 60(6):3121-3130.

    24. [24]

      YILDIRIM D, GOKCAL B, BUBER E, KIP C, DEMIR M C, TUNCEL A. Chem. Eng. J., 2021, 403:126357.

    25. [25]

      MA C B, XU Y, WU L, WANG Q, ZHENG J J, REN G, WANG X, GAO X, ZHOU M, WANG M, WEI H. Angew.Chem,. Int. Ed., 2022, DOI:10.1002/ange.202116170.

    26. [26]

      WANG L, GAO F, WANG A, CHEN X, LI H, ZHANG X, ZHENG H, JI R, LI B, YU X, LIU J, GU Z, CHEN F,CHEN C. Adv. Mater., 2020, 32(48):2005423.

    27. [27]

      WANG X, SUN X Y, BU T, WANG Q Z, ZHANG H, JIA P, LI L W, WANG L. Acta Biomater., 2021, 135:342-355.

    28. [28]

      WANG Y G, WANG Y Y, WANG F Z, CHI H, ZHAO G H, ZHANG Y, LI T D, WEI Q. J. Colloid Interface Sci.,2022, 606:510-517.

    29. [29]

      VERNEKAR A A, SINHA D, SRIVASTAVA S, PARAMASIVAM P U, D’SILVA P, MUGESH G. Nat. Commun.,2014, 5:5301.

    30. [30]

      CHEN J X, WU W W, HUANG L, MA Q, DONG S J. Chem.-Eur. J., 2019, 25(51):11940-11944.

    31. [31]

      DAVID M, SERBAN A, RADULESCU C, DANET A F, FLORESCU M. Bioelectrochemistry, 2019, 129:124-134.

    32. [32]

      JIANG Z X, LI H, DENG Y Q, HE Y. ACS Sustainable Chem. Eng., 2020, 8(13):5076-5081.

    33. [33]

      KARIM M N, ANDERSON S R, SINGH S, RAMANATHAN R, BANSAL V. Biosens. Bioelectron., 2018, 110:8-15.

    34. [34]

      JIA Z, YUAN X Y, WEI J A, GUO X, GONG Y C, LI J, ZHOU H, ZHANG L, LIU J. ACS Appl. Mater. Interfaces,2021, 13(42):49602-49613.

    35. [35]

      ZENG R J, LUO Z B, ZHANG L J, TANG D P. Anal. Chem., 2018, 90(20):12299-12306.

    36. [36]

      ZHANG Y, LIU Q Y, MA C B, WANG Q Q, YANG M T, DU Y. Theranostics, 2020, 10(11):5064-5073.

    37. [37]

      DING H, HU B, ZHANG B, ZHANG H, YAN X Y, NIE G H, LIANG M M. Nano Res., 2021, 14(3):570-583.

    38. [38]

      FAN K L, XI J Q, FAN L, WANG P X, ZHU C H, TANG Y, XU X D, LIANG M M, JIANG B, YAN X Y, GAO L Z.Nat. Commun., 2018, 9:1440.

    39. [39]

      SINGH N, SAVANUR M A, SRIVASTAVA S, D’SILVA P, MUGESH G. Angew. Chem., Int. Ed., 2017, 56(45):14267-14271.

    40. [40]

      SUN H, ZHAO A, GAO N, LI K, REN J, QU X. Angew. Chem., Int. Ed., 2015, 54(24):7176-7180.

    41. [41]

      KISTLER S S. Nature, 1931, 127:741.

    42. [42]

      GAO X D, HUANG Y D, ZHANG T T, WU Y Q, LI X M. J. Mater. Chem. A, 2017, 5(25):12856-12862.

    43. [43]

      JIANG F, HSIEH Y L. J. Mater. Chem. A, 2014, 2(18):6337-6342.

    44. [44]

      SONG X, CHEN Y, RONG M, XIE Z, ZHAO T, WANG Y, CHEN X, WOLFBEIS O S. Angew. Chem., Int. Ed.,2016, 55(12):3936-3941.

    45. [45]

      YUAN Y, ZHANG C, WANG C, CHEN M. J. Solid State Electrochem., 2015, 19(2):619-627.

    46. [46]

      MA C B, ZHANG Y, LIU Q, DU Y, WANG E. Anal. Chem., 2020, 92(7):5319-5328.

    47. [47]

      MA C B, DU B, WANG E. Adv. Funct. Mater., 2017, 27(10):1604423.

    48. [48]

      LING P, ZHANG Q, CAO T, GAO F. Angew. Chem., Int. Ed., 2018, 57(23):6819-6824.

    49. [49]

      ZHANG Y, WU C, ZHOU X, WU X, YANG Y, WU H, GUO S, ZHANG J. Nanoscale, 2013, 5(5):1816-1819.

    50. [50]

      FAN K, XI J, FAN L, WANG P, ZHU C, TANG Y, XU X, LIANG M, JIANG B, YAN X, GAO L. Nat. Commun.,2018, 9:1440.

    51. [51]

      ZHANG P, SUN D, CHO A, WEON S, LEE S, LEE J, HAN J W, KIM D P, CHOI W. Nat. Commun., 2019, 10:940.

    52. [52]

      VALLABANI N V S, KARAKOTI A S, SINGH S. Colloids Surf., B, 2017, 153:52-60.

    53. [53]

      TAO Y, LIN Y, HUANG Z, REN J, QU X. Adv. Mater., 2013, 25(18):2594-2599.

    54. [54]

      GUO Y, DENG L, LI J, GUO S, WANG E, DONG S. ACS Nano, 2011, 5(2):1282-1290.

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    3. [3]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    4. [4]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    7. [7]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    8. [8]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    9. [9]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    12. [12]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    13. [13]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    14. [14]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    16. [16]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    17. [17]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(8)
  • Abstract views(536)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return