Citation: HU Ming-Jiang,  LYU Chun-Wang,  ZHAO Li-Xia,  WANG Xu-Rong,  SONG Yan-Ping,  HENG Li-Jun. Heterojunction Bi2O3-TiO2 Nanofiber as Cataluminescence Material for Detection of Toluene[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1103-1111. doi: 10.19756/j.issn.0253-3820.221062 shu

Heterojunction Bi2O3-TiO2 Nanofiber as Cataluminescence Material for Detection of Toluene

  • Corresponding author: HU Ming-Jiang, hu_mingjiang@163.com
  • Received Date: 2 February 2022
    Revised Date: 24 April 2022

    Fund Project: Supported by the Science and Technology Foundation of He'nan Province, China (No.212102210199).

  • Bi2O3-TiO2 nanofibers (NFs) were synthesized by electrospinning method, and a geterojunction cataluminescence toluene gas sensor was thus designed by depositing Bi2O3-TiO2 NFs onto the cylindrical ceramic heating rod surface as cataluminescence material by dip-coating method. The crystalline phase and microstructure of Bi2O3-TiO2 NFs were displayed using X-ray diffraction and scanning electron microscope, and the cataluminescence mechanism and electrochemical characteristic of Bi2O3-TiO2 NFs in detection of toluene were analyzed by UV-Vis spectrometry, X-ray photoelectron spectroscopy and Fourier infrared spectroscopy (FT-IR). Density functional theory (DFT) was used to calculate the charge density and differential charge density of atoms in Bi2O3-TiO2 NFs heterojunction, and the sensitization mechanism of sensor was further proposed for detecting toluene gas. Under the optimal conditions including 450 nm of wavelength, 200 mL/min of flow rate and at 250℃, there was a good relationship between the CTL intensity of Bi30 toluene gas sensor and the toluene concentration in the range of 0.1-200 μg/m3. The detection limit was 0.1 μg/m3 (S/N=10), the RSD was 1.81%, and the dynamic response time and recover time of toluene gas sensor were 7.2 s and 9.4 s respectively. This study provided a feasible strategy for rapid and efficient detection of toluene, as well as a new sensing platform for detection of volatile organic compounds.
  • 加载中
    1. [1]

      MALIK R, TOMER V K, CHAUDHARY V, DAHIYA M S, NEHRA S P, DUHAN S, KAILASAM K. Sens. Actuators, B, 2018, 255:3564-3575.

    2. [2]

      PARGOLETTI E, VERGA S, CHIARELLO G L, LONGHI M, CERRATO G, GIORDANA A, CAPPELLETTI G. Nanomaterials, 2020, 10(4):761.

    3. [3]

      RODRIGUES R, PALMA S I C J, CORREIA V G, PADRO I, PAIS J, BANZA M, ALVES C, DEUERMEIER J, MARTINS C, COSTA H M A, RAMOU E, PEREIRA C S, ROQUE A C A. Mater. Today Bio, 2020, 8:100083.

    4. [4]

      TAN J F, DUN M H, LI L, HUANG X T. Mater. Res. Express, 2018, 5(4):045036.

    5. [5]

      KIM T H, JEONG S Y, MOON Y K, LEE J H. Sens. Actuators, B, 2019, 301:127140.

    6. [6]

      ZHANG Y L, JIA C W, WANG Q Y, KONG Q, CHEN G, GUAN H T, DONG C J. Nanomaterials, 2019, 9(8):1059.

    7. [7]

      WANG J L, WU Z L, CHEN S H, YUAN R, DONG L. Microchem. J., 2019, 151:104246.

    8. [8]

      CHELLASAMY G, ANKIREDDY S R, LEE K N, GOVINDARAJU S, YUN K. Mater. Today Bio, 2021, 12:100168.

    9. [9]

      STEFAN M, LEOSTEAN C, PANA O, POPA A, TOLOMAN D, MACAVEI S, PERHAITA I, BARBU-TUDORAN L, SILIPAS D. J. Mater. Sci., 2020, 55:3279-3298.

    10. [10]

      LEE J H, MIRZAEI A, KIMJ H, KIM J Y, NASRIDDINOV A F, RUMYANTSEVA M N, KIM Y W, KIM S S. Sens. Actuators, B, 2020, 310:127870.

    11. [11]

      SUZUKI H, AWA K, NAYA S I, TADA H. Catal. Commun., 2020, 147:106148.

    12. [12]

      SUBHAN M A, JHUMA S S, SAHA P C, AHMED J, ASIRI A M, RIFAT T P, RAIHAN T, AZAD A K, RAHMAN M M. J. Environ. Chem. Eng., 2020, 8(4):104051.

    13. [13]

      KUMAR V, CHAUHAN V, RAM J, GUPTA R, KUMAR S, CHAUDHARY P, YADAV B C, OJHA S, SULANIA I, KUMAR R. Surf. Coat. Technol., 2020, 392:125768.

    14. [14]

      HUANG Q, YE J, SI H, YANG B, TAO T, ZHAO Y X, CHEN M D, YANG H. Catal. Lett., 2020, 150:1098-1110.

    15. [15]

      WANG X Y, YANG X, MIAO L, GAO J, PENG Q M, WU L P, CHEN S Y, LI X J. J. Mater. Sci., 2019, 54:4637-4646.

    16. [16]

      PENG W D, YANG C, YU J. RSC Adv., 2020, 10(2):1181-1190.

    17. [17]

      WANG C, TAN C, LV W Q, ZHU G L, WEI Z H, ZHANG K H L, HE W D. Mater. Today Chem., 2018, 8:36-41.

    18. [18]

      LI J Z, MAO N F, LI X, CHEN F F, LI Y W, JIANG K, HU Z G, CHU J H. Sol. Energy Mater. Sol. Cells, 2020, 204:110218.

    19. [19]

    20. [20]

      DAVID S P S, VEERALAKSHMI S, SANDHYA J, NEHRU S, KALAISELVAM, S. Sens. Actuators, B, 2020, 320:128410.

    21. [21]

      LIU T Y, YU Z Y, LIU Y Y, GAO J, WANG X Y, SUO H, YANG X T, ZHAO C, LIU F M. Sens. Actuators, B, 2020, 318:128167.

    22. [22]

      WANG N J, CAO X A, HE R W, LIU Y H, HUANG Y J. Adv. Mater. Res., 2013, 663:335-342.

    23. [23]

      SHA W, NI S W, ZHENG C H. Sens. Actuators, B, 2015, 209:297-305.

    24. [24]

      SUN Y, CAO X A, LIU Y H, WANG N J, HE R W. Luminescence, 2014, 29(2):122-126.

    25. [25]

    26. [26]

      GUAN Z C, WANG H P, WANG X, HU J, DU R G. Corros. Sci., 2018, 136:60-69.

    27. [27]

      YOU S Z, HU Y, LIU X C, WEI C H. Appl. Catal., B, 2018, 232:288-298.

    28. [28]

      BARAHIMI V, MOGHIMI H, TAHERI R A. J. Environ. Chem. Eng., 2019, 7(3):103078.

    29. [29]

      ŽERJAV G, PINTAR A. Catalysts, 2020, 10(4):395.

    30. [30]

      LIANG Y C, CHIANG K J. Nanomaterials, 2020, 10(5):1005.

    31. [31]

      LIM G D, YOO J H, JI M, LEE Y I. J. Alloys Compd., 2019, 806:1060-1067.

    32. [32]

    33. [33]

      XU D F, HAI Y, ZHANG X C, ZHANG S Y, HE R A. Appl. Surf. Sci., 2017, 400:530-536.

  • 加载中
    1. [1]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    2. [2]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    4. [4]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    5. [5]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    6. [6]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    7. [7]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    8. [8]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    9. [9]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    13. [13]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

Metrics
  • PDF Downloads(6)
  • Abstract views(484)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return