Citation: FANG Tian-Shu,  NIU Ji-Cheng,  XU Bei-Duo,  ZHANG Yue,  LI Li,  LI Fei. Research Progress of Portable Point-of-Care Testing Technologies and Applications for Ocular Surface[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1639-1660. doi: 10.19756/j.issn.0253-3820.221061 shu

Research Progress of Portable Point-of-Care Testing Technologies and Applications for Ocular Surface

  • Corresponding author: LI Li,  LI Fei, 
  • Received Date: 31 January 2022
    Revised Date: 20 May 2022

    Fund Project: Supported by the Natural Science Foundation of Shannxi Province, China (No.2020JC-06) and the Key R&D Plan of Shaanxi Province, China (Nos.2021SF-168, 2020ZDLSF02-06).

  • As a human visual organ, the outermost ocular surface tissue and its tear film contain a lot of information that can be used for disease diagnosis. Point-of-care testing (POCT) of physiological and biochemical indexes of ocular surface is of great importance for early diagnosis and long-term monitoring of chronic diseases, such as eye diseases and diabetes. In recent years, with the rapid development of biomaterials, micro- and nano-electronics and other technologies, POCT and portable sensing technologies for various physiological and biochemical indexes on the ocular surface have rapidly developed. This paper mainly reviews the research progress of portable POCT technologies and their applications on ocular surface in recent 5 years. Firstly, the main physiological and biochemical indexes of ocular surface related to eye and other diseases are introduced. Then, according to the detection platform and detection method, the paper-based and smart contact lens-based portable POCT platforms and the optical, electrochemical, electrical and microfluidic POCT methods for ocular surface are introduced, respectively. And the representative examples of portable POCT technologies of the physiological and biochemical indexes of ocular surface in recent 5 years are introduced. Finally, the challenges and future development direction of portable POCT technologies and devices on ocular surface are proposed. The objective of this paper is to introduce the portable POCT technologies and applications for ocular surface, so as to provide references for the development of diagnosis and treatment of ocular and related diseases.
  • 加载中
    1. [1]

      JACOB J T, HAM B. Ocul. Surf., 2008, 6(4):175-185.

    2. [2]

      JONAS J B, AUNG T, BOURNE R R, BRON A M, RITCH R, PANDA-JONAS S. Lancet, 2017, 390(10108):2183-2193.

    3. [3]

      QUIGLEY H A, JAMPEL H D. J. Glaucoma, 2003, 12(6):451-455.

    4. [4]

      HAGAN S, MARTIN E, ENRÍQUEZ-DE-SALAMANCA A. EPMA J., 2016, 7:15-34.

    5. [5]

      LANE J D, KRUMHOLZ D M, SACK R A, MORRIS C. Curr. Eye Res., 2006, 31(11):895-901.

    6. [6]

      FERESHETIAN S, AGRANAT J S, SIEGEL N, NESS S, STEIN T D, SUBRAMANIAN M L J. Alzheimers Dis. Rep., 2021, 5(1):375-387.

    7. [7]

    8. [8]

      WEHMEIER M, ARNDT B T, SCHUMANN G, KVLPMANN W R. Clin. Chem. Lab. Med., 2006, 44(7):888-893.

    9. [9]

      BURKE J, HAIGNEY M C P, BORNE R, KRANTZ M J. Heart Rhythm Case Rep., 2020, 6(10):800-804.

    10. [10]

      HAMAD E M, HAWAMDEH G, JARRAD N A, YASIN O, AL-GHARABLI S I, SHADFAN R. Detection of Human Chorionic Gonadotropin (hCG) Hormone Using Digital Lateral Flow Immunoassay. In:201840th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018:3845-3848.

    11. [11]

      GUBALA V, HARRIS L F, RICCO A J, TAN M X, WILLIAMS D E. Anal. Chem., 2012, 84(2):487-515.

    12. [12]

      JANG H, NOH H. Macromol. Res., 2015, 23:493-495.

    13. [13]

      YAMADA K, TAKAKI S, KOMURO N, SUZUKI K, CITTERIO D. Analyst, 2014, 139(7):1637-1643.

    14. [14]

      YAN Q, PENG B, SU G, COHAN B E, MAJOR T C, MEYERHOFF M E. Curr. Eye Res., 2011, 83(21):8341-8346.

    15. [15]

      CHU M X, MIYAJIMA K, TAKAHASHI D, ARAKAWA T, SANO K, SAWADA S, KUDO H, IWASAKI Y, AKIYOSHI K, MOCHIZUKI M, MITSUBAYASHI K. Talanta, 2011, 83(3):960-965.

    16. [16]

      YAO H, SHUM A J, COWAN M, LAHDESMAKI I, PARVIZ B A. Biosens. Bioelectron., 2011, 26(7):3290-3296.

    17. [17]

      THOMAS N, LÄHDESMÄKI I, PARVIZ B A. Sens. Actuators, B, 2012, 162(1):128-134.

    18. [18]

      CHEN Y, ZHANG S, CUI Q, NI J, WANG X, CHENG X, ALEM H, TEBON P, XU C, GUO C, NASIRI R, MOREDDU R, YETISEN A K, AHADIAN S, ASHAMMAKHI N, EMAMINEJAD S, JUCAUD V, DOKMECI M R, KHADEMHOSSEINI A. Lab Chip, 2020, 20(22):4205-4214.

    19. [19]

      KIM S, JEON H J, PARK S, LEE D Y, CHUNG E. Sci. Rep., 2020, 10:8254.

    20. [20]

      LIAO Y T, YAO H F, LINGLEY A, PARVIZ B, OTIS B P. IEEE J. Solid-State Circuits, 2012, 479(1):335-344.

    21. [21]

      LAMPARTER J, HOFFMANN E M. Der Ophthalmologe, 2009, 106(8):676-682.

    22. [22]

      STEIN J D, KHAWAJA A P, WEIZER J S. JAMA, J. Am. Med. Assoc., 2021, 325(2):164-174.

    23. [23]

      PURSLOW C, WOLFFSOHN J S. Eye&Contact Lens, 2005, 31(3):117-123.

    24. [24]

      YANG W L, ZHANG L. Curr. Eye Res., 2017, 42(5):655-660.

    25. [25]

      PARVER L M. Eye, 1991, 5(2):181-185.

    26. [26]

      KLAMANN M K J, MAIER A K B, GONNERMANN J, KLEIN J P, BERTELMANN E, PLEYER U. Ophthalmic. Res., 2013, 49:52-56.

    27. [27]

      SNIEGOWSKI M C, ERLANGER M, OLSON J. Int. Ophthalmol., 2018, 38(6):2335-2339.

    28. [28]

      FUJISHIMA H, TODA I, YAMADA M, SATO N, TSUBOTA K. Br. J. Ophthalmol., 1996, 80:29-32.

    29. [29]

      GROSS S, GUGLETA K, TURKSEVER C, LEDOLTER A, KOCHKOROV A, FLAMMER J, ORGUL S. Klinische Monatsblatter fur Augenheilkunde, 2014, 231(4):335-339.

    30. [30]

      SCHIRMER O. Albrecht von Graefes Archiv für Ophthalmologie, 1903, 56(2):197-291.

    31. [31]

      DOWNIE L E, BANDLITZ S, BERGMANSON J P G, CRAIG J P, DUTTA D, MALDONADO-CODINA C, NGO W, SIDDIREDDY J S, WOLFFSOHN J S. Contact Lens Anterior Eye, 2021, 44(2):132-156.

    32. [32]

      ABELSON M B, UDELL I J, WESTON J H. Arch. Ophthalmol., 1981, 99(2):301.

    33. [33]

      CHEN F S, MAURICE D M. Exp. Eye Res., 1990, 50(3):251-259.

    34. [34]

      BROWNING D J. Am. J. Ophthalmol., 1985, 99(5):530-533.

    35. [35]

      THYGESEN J E M, JENSEN O L. Acta Ophthalmol., 1987, 65(2):134-136.

    36. [36]

      AHMED I, PATTON T F. Int. J. Pharm., 1984, 19(2):215-227.

    37. [37]

      GILBARD J P. Int. Ophthalmol. Clin., 1994, 34:27-36.

    38. [38]

      MIRZA G E, KARAKVCVK S, ER M, GVNGÖRMVS N, KARAKUUK Ï, SARAYMEN R. Ophthalmic. Res., 2000, 33:48-51.

    39. [39]

      TAMHANE M, CABRERA-GHAYOURI S, ABELIAN G, VISWANATH V. Pharm. Res., 2019, 36(3):40.

    40. [40]

      WILLCOX M D P, ARGUESO P, GEORGIEV G A, HOLOPAINEN J M, LAURIE G W, MILLAR T J, PAPAS E B, ROLLAND J P, SCHMIDT T A, STAHL U, SUAREZ T, SUBBARAMAN L N, UCAKHAN O O, JONES L. Ocul. Surf., 2017, 15(3):366-403.

    41. [41]

      TOMIDA D, YAGI-YAGUCHI Y, HIGA K, SATAKE Y, SHIMAZAKI J, YAMAGUCHI T. Ocul. Surf., 2020, 18(4):801-807.

    42. [42]

      WILD S, ROGLIC G, GREEN A, SICREE R, KING H. Diabetes Care, 2004, 27(5):2569-2569.

    43. [43]

      LEWIS J G. Br. J. Ophthalmol., 1959, 42(12):754-758.

    44. [44]

      FAUBERT B, LI K Y, CAI L, HENSLEY C T, KIM J, ZACHARIAS L G, YANG C D, DO Q N, DOUCETTE S, BURGUETE D, LI H, HUET G, YUAN Q, WIGAL T, BUTT Y, NI M, TORREALBA J, OLIVER D, LENKINSKI R E, MALLOY C R, WACHSMANN J W, YOUNG J D, KERNSTINE K, DEBERARDINIS R J. Cell, 2017, 171(2):358-371.

    45. [45]

      VAN HAERINGEN N J. Surv. Ophthalmol., 1981, 26(2):84-96.

    46. [46]

      YAZDANI M, ELGSTØEN K B P, ROOTWELT H, SHAHDADFAR A, UTHEIM Ø, UTHEIM T P. Int. J. Mol. Sci., 2019, 20(15):3755-3773.

    47. [47]

      HU J, WANG S Q, WANG L, LI F, BELINDA P, LU T J, XU F. Biosens. Bioelectron., 2014, 54:585-597.

    48. [48]

      LI Q, JIAO S J, WANG Y Q, XIE H T, ZHANG M C. Cornea, 2022, 41(2):232-237.

    49. [49]

      KANG B H, PARK M, JEONG K H. BioChip J., 2017, 11(4):294-299.

    50. [50]

      YAMADA K, HENARES T G, SUZUKI K, CITTERIO D. ACS Appl. Mater. Interfaces, 2015, 7(44):24864-24875.

    51. [51]

      LIN C E, HIRAKA K, MATLOFF D, JOHNS J, DENG A, SODE K, LA BELLE J. Sens. Actuators, B, 2018, 270(10):525-529.

    52. [52]

      SWANSON M W. Optom. Vision Sci., 2012, 89(6):839-848.

    53. [53]

      ARACI I E, SU B, QUAKE S R, MANDEL Y. Nat. Med., 2014, 20(9):1074-1078.

    54. [54]

      CHEN G Z, CHAN I S, LAM D C C. Sens. Actuators, A, 2013, 203(12):112-118.

    55. [55]

      MOREDDU R, MAHMOODI N, KASSANOS P, VIGOLO D, MENDES P M, YETISEN A K. ACS Appl. Polym. Mater., 2021, 3(11):5416-5424.

    56. [56]

      MARCH W F, MUELLER A, HERBRECHTSMEIER P. Diabetes Technol. Ther., 2004, 6(6):782.

    57. [57]

      MARCH W, LAZZARO D, RASTOGI S. Diabetes Technol. Ther., 2006, 8(3):312-317.

    58. [58]

      ELSHERIF M, HASSAN M U, YETISEN A K, BUTT H. ACS Nano, 2018, 12(6):5452-5462.

    59. [59]

      MAENG B, CHANG H, PARK J. Lab Chip, 2020, 20(10):1740-1750.

    60. [60]

      ALQATTAN B, YETISEN A K, BUTT H. ACS Nano, 2018, 12(6):5130-5140.

    61. [61]

      KIM J, KIM M, LEEM S, KIM K, JI S, KIM Y T, PARK J, NA K, BAE K H, KYUN K H, BIEN F, YOUNG L C, PARK J U. Nat. Commun., 2017, 8:14997.

    62. [62]

      PUNNOY P, PREECHAKASEDKIT P, AUMNATE C, RODTHONGKUM N, POTIYARAJ P, RUECHA N. Mater. Lett., 2021, 299:130076.

    63. [63]

      KOWNACKA A E,VEGELYTE D, JOOSSE M, ANTON N, TOEBES B J, LAUKO J, BUZZACCHERA I, LIPINSKA K, WILSON D A, GEELHOED-DUIJVESTIJN N, WILSON C J. Biomacromolecules, 2018, 19(11):4504-4511.

    64. [64]

      GAO B B, HE Z Z, HE B F, GU Z Z. Sens. Actuators, B, 2019, 288:734-741.

    65. [65]

      SEMPIONATTO J R, BRAZACA L C, GARCIA-CARMONA L, BOLAT G, CAMPBELL A S, MARTIN A, TANG G, SHAH R, MISHRA R K, KIM J, ZUCOLOTTO V, ESCARPA A, WANG J. Biosens. Bioelectron., 2019, 137(4):161-170.

    66. [66]

      ROMANO A, ROLANT F. Metab., Pediatr. Syst. Ophthalmol., 1988, 11(1-2):78.

    67. [67]

      GABRIEL E, GARCIA P, LOPES F, COLTRO W. Micromachines, 2017, 8(4):104.

    68. [68]

      LUO J J, PAN S W, YANG J H, CHANG T L, LIN P Y, WU C L, LIU W F, HUANG X R, KOSHEVOY I O, CHOU P T, HO M L. Polymers, 2018, 10(9):1001.

    69. [69]

      RIAZ R S, ELSHERIF M, MOREDDU R, RASHID I, HASSAN M U, YETISEN A K, BUTT H. ACS Omega, 2019, 4(26):21792-21798.

    70. [70]

      ALQURASHI Y, BAJGROWICZ-CIESLAK M, HASSAN M U, YETISEN A K, BUTT H. Adv. Eng. Mater., 2018, 20(6):1700963.

    71. [71]

      MOREDDU R, WOLFFSOHN J S, VIGOLO D, YETISEN A K. Sens. Actuators, B, 2020, 317:128183.

    72. [72]

      MOREDDU R, ELSHERIF M, ADAMS H, MOSCHOU D, CORDEIRO M F, WOLFFSOHN J S, VIGOLO D, BUTT H, COOPER J M, YETISEN A K. Lab Chip, 2020, 20(21):3970-3979.

    73. [73]

      GUZMAN J M C C, HSU S M, CHUANG H S. Biosensors, 2020, 10(10):130-143.

    74. [74]

      YANG X, YAO H Y, ZHAO G N, GUILLERMO A A, SUN W, YANG J, MI S L. J. Mater. Sci., 2020, 55:9551-9561.

    75. [75]

      DENG M Y, SONG G J, ZHONG K, WANG Z C, XIA X, TIAN Y Q. Sens. Actuators, B, 2022, 352:131067.

    76. [76]

      SONOBE H,OGAWA Y, YAMADA K, SHIMIZU E, UCHINO Y, KAMOI M, SAIJO Y, YAMANE M, CITTERIO D, SUZUKI K, TSUBOTA K. Ocul. Surf., 2019, 17(1):160-166.

    77. [77]

      BADUGU R, SZMACINSKI H, REECE E A, JENG B H, LAKOWICZ J R. Anal. Biochem., 2020, 608:113902.

    78. [78]

      YETISEN A K, JIANG N, TAMAYOL A, RUIZ-ESPARZA G U, ZHANG Y S, MEDINA-PANDO S, GUPTA A, WOLFFSOHN J S, BUTT H, KHADEMHOSSEINI A, YUN S H. Lab Chip, 2017, 17(6):1137-1148.

    79. [79]

      YETISEN A K, JIANG N, CASTANEDA GONZALEZ C M, ERENOGLU Z I, DONG J, DONG X, STOSSER S, BRISCHWEIN M, BUTT H, CORDEIRO M F, JAKOBI M, HAYDEN O, KOCH A W. Adv. Mater., 2020, 32(6):1906762.

    80. [80]

      SHIN H, SEO H, CHUNG W G, JOO B J, JANG J, PARK J U. Lab Chip, 2021, 21(7):1269-1286.

    81. [81]

      WANG Y, ZHAO Q, DU X. J. Mater. Chem. B, 2020, 8(16):3519-3526.

    82. [82]

      RUAN J L, CHEN C, SHEN J H, ZHAO X L, QIAN S H, ZHU Z G. Polymers, 2017, 9(4):125.

    83. [83]

      LEE J O, PARK H, DU J, BALAKRISHNA A, CHEN O, SRETAVAN D, CHOO H. Microsyst. Nanoeng., 2017, 3(6):17057.

    84. [84]

      ELSHERIF M, ALAM F, SALIH A E, ALQATTAN B, YETISEN A K, BUTT H. Small, 2021, 17(51):2102876.

    85. [85]

      MOREDDU R, ELSHERIF M, BUTT H, VIGOLO D, YETISEN A K. RSC Adv., 2019, 9(20):11433-11442.

    86. [86]

      LIU H, YAN X, GU Z, XIU G, XIAO X. Electroanalysis, 2021, 34(2):227-236.

    87. [87]

      HAN J H, CHO Y C, KOHW G, CHOY Y B. PLoS One, 2020, 15(10):e0239317.

    88. [88]

      CARDINELL B A, SPANO M L, BELLE J. CRC Crit Rev. Bioeng., 2019, 47(3):207-215.

    89. [89]

      WANG Y R, CHUANG H C, TRIPATHI A, WANG Y L, KO M L, CHUANG C C, CHEN J C. Anal. Chem., 2021, 93(22):8099-8106.

    90. [90]

      PARVIZ B A. Spectrum IEEE, 2009, 46(9):36-41.

    91. [91]

      KU M, KIM J, WON J E, KANG W, PARK J U. Sci. Adv., 2020, 6(28):eabb2891.

    92. [92]

      GUO S, WU K, LI C, WANG H, SUN Z, XI D, ZHANG S, DING W, ZAGHLOUL M E, WANG C, CASTRO F A, YANG D, ZHAO Y. Matter, 2021, 4(3):969-985.

    93. [93]

      PARK J, KIM J, KIM S Y, CHEONG W H, JANG J, PARK Y G, NA K, KIM Y T, HEO J H, LEE C Y, LEE J H, BIEN F, PARK J U. Sci. Adv., 2018, 4(1):eaap9841.

    94. [94]

      KEUM D H, KIM S K, KOO J, LEE G H, HAHN S K. Sci. Adv., 2020, 6(17):eaba3252.

    95. [95]

      COLLINS C C. IEEE Trans. Biomed. Eng., 1967, BM14(2):74-83.

    96. [96]

      EKINCI G, CALIKOGLU A, SOLAK S N, YALCINKAYA A D, TORUN H. Sens. Actuators, A, 2017, 268:32-37.

    97. [97]

      KARUNARATNE I K, LEE C H C, OR P W, WEI Y F, CHONG I T, YANG Y F, YU M B, LAM D C C. Sens. Actuators, A, 2021, 321:112580.

    98. [98]

      KOUHANI M H M, WU J, TAVAKOLI A, WEBER A J, LI W. Lab Chip, 2020, 20(2):332-342.

    99. [99]

      PANG Y, LI Y X, WANG X F, QI C J, YANG Y, REN T L. RSC Adv., 2019, 9(9):5076-5082.

    100. [100]

      KIM J, PARK J, PARK Y G, CHA E, KU M, AN H S, LEE K P, HUH M I, KIM J, KIM T S, KIM D W, KIM H K, PARK J U. Nat. Biomed. Eng., 2021, 5(7):772-782.

    101. [101]

      XU J, CUI T, HIRTZ T, QIAO Y, LI X, ZHONG F, HAN X, YANG Y, ZHANG S, REN T L. ACS Appl. Mater. Interfaces, 2020, 12(16):18375-18384.

    102. [102]

      LIU Z, WANG G, PEI W, WEI C, WU X, DOU Z, LI Y, WANG Y, CHEN H. J. Mater. Chem. B, 2020, 8(38):8794-8802.

    103. [103]

      LIU Z D, WANG G, YE C, SUN H Y, PEI W H, WEI C R, DAI W, DOU Z Q, SUN Q Y, LIN C T, WANG Y J, CHEN H D, SHEN G Z. Adv. Funct. Mater., 2021, 31(29):2010991.

    104. [104]

      AGAOGLU S, DIEP P, MARTINI M, KT S, BADAY M, ARACI I. E. Lab Chip, 2018, 18(22):3471-3483.

    105. [105]

      AN H B, CHEN L, LIU X J, ZHAO B, ZHANG H, WU Z G. Sens. Actuators, A, 2019, 295:177-187.

    106. [106]

      CAMPIGOTTO A, LEAHY S, ZHAO G, CAMPBELL R J, LAI Y. Br. J. Ophthalmol., 2020, 104(9):1324-1328.

    107. [107]

      WANG X, LI F, CAI Z, LIU K, LI J, ZHANG B, HE J. Anal. Bioanal. Chem., 2018, 410(10):2647-2655.

    108. [108]

      KIM H, HYUNG J, NOH H. Chemosensors, 2020, 8(3):81-91.

    109. [109]

      ALLAMEH S, RABBANI M. Appl. Biochem. Biotechnol., 2022, 194(5):2077-2092.

    110. [110]

      LIN Y R, HUNG C C, CHIU H Y, CHANG B H, LI B R, CHENG S J, YANG J W, LIN S F, CHEN G Y. Sensors, 2018, 189(10):3208.

    111. [111]

      EKINCI G, CALIKOGLU A, SOLAK S N, YALCINKAYA A D, DUNDAR G, TORUN H. Sens. Actuators, A, 2017, 268:32-37.

  • 加载中
    1. [1]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    2. [2]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    3. [3]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    4. [4]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    5. [5]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    6. [6]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    7. [7]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    8. [8]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    9. [9]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    12. [12]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    15. [15]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    16. [16]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    17. [17]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    18. [18]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    19. [19]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    20. [20]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

Metrics
  • PDF Downloads(11)
  • Abstract views(676)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return