Citation: WEI Liang,  HUANG Xin-Long,  WANG Yan-Li,  YANG Jing,  YAN Fei-Yan,  NING De-Jiao,  TANG Li,  LUO Li-Hong,  WEI Yu-Ning,  YA Yu. Preparation of Hierarchically Porous Carbon Using Different Activators and Its Electrochemical Sensing of Dihydroxybenzene Isomers[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 899-911. doi: 10.19756/j.issn.0253-3820.221048 shu

Preparation of Hierarchically Porous Carbon Using Different Activators and Its Electrochemical Sensing of Dihydroxybenzene Isomers

  • Corresponding author: YA Yu, yayu1026@163.com
  • Received Date: 24 January 2022
    Revised Date: 30 March 2022

    Fund Project: Supported by the National Natural Science Foundation of China(No. 21862004), the Natural Science Foundation of Guangxi, China(Nos. 2018GXNSFAA281230, 2018GXNSFAA281228), the Guangxi Agricultural Science and Technology Union Project(No. 202216), the Dominant Research Team Project of Guangxi Academy of Agricultural Sciences(No. 2021YT136), and the Innovation Project of Guangxi Graduate Education(No.YCSW2020193)

  • The hierarchically porous carbon materials were prepared with chitosan(CS) as carbon source, and NaCl, NaOH and Na2CO3 as activators. The morphology, porous structure, specific surface area and pore size distribution of the prepared carbon materials were characterized by scanning electron microscopy, X-ray diffraction, Raman spectrum and nitrogen adsorption-desorption isotherms,respectively. And the electrochemical properties of different carbon materials-modified electrode were studied by electrochemical techniques. Thus, structure-activity relationship between the morphology,structural and physicochemical parameters of different carbon materials and their electrochemical sensing properties were explored. The results showed that the hierarchically porous carbon material(CS-Na2CO3,prepared using Na2CO3 as activator) modified electrode had larger electrochemical active area, faster electron transfer rate and better electrocatalytic performance for three dihydroxybenzene isomers. A highperformance electrochemical sensing platform for simultaneous determination of hydroquinone, catechol and resorcinol was constructed based on the signal enhancement effect of CS-Na2CO3. The linear ranges for simultaneous determination of hydroquinone, catechol and resorcinol were 0.050-1.5 μmol/L,0.050-1.5 μmol/L and 0.50-15 μmol/L, and the detection limits (3σ) were calculated to be 0.012, 0.017 and 0.29 μmol/L, respectively. The prepared sensing platform demonstrated good accuracy in detection of dihydroxybenzene isomers in river water samples.
  • 加载中
    1. [1]

      WANG N Y, YANG Z J, YANG D H, ZHAO L, SHI X R, YANG G, HAN B H. ACS Appl. Mater. Interfaces, 2021, 13(7):8832-8843.

    2. [2]

      ZHONG R, ZHI C, WU Y, LIANG Z, TABASSUM H, ZHANG H, QIU T, GAO S, SHI J, ZOU R. Chin. Chem.Lett., 2020, 31(6):1588-1592.

    3. [3]

      WU X, LI H, YANG X, WANG X, MIAO Z, ZHOU P, ZHOU J, ZHUO S. Electrochim. Acta, 2021, 368:137610.

    4. [4]

      YI Y, WANG P, FAN G, WANG Z, CHEN S, XUE T, WEN Y. ACS Sustainable Chem. Eng., 2020, 8(26):9937-9946.

    5. [5]

      WU W, LIU Y, LIU D, CHEN W, SONG Z, WANG X, ZHENG Y, LU N, WANG C, MAO J, LI Y. Nano Res., 2021, 14(4):998-1003.

    6. [6]

      LIU Z, WANG L, YANG W. Chin. Chem. Lett., 2021, 32(9):2919-2922.

    7. [7]

      HUO S, ZHAO Y, ZOMG M, LIANG B, ZHANG X, KHAN I U, SONG X, LI K. J. Mater. Chem. A, 2020, 8(5):2505-2517.

    8. [8]

      DÍEZ N, FERRERO G A, SEVILLA M, FUERTES A B. J. Mater. Chem. A, 2019, 7(23):14280-14290.

    9. [9]

    10. [10]

      WEI L, HUANG X, ZHANG X, YANG X, YANG J, YAN F, YA Y. Anal. Methods, 2021, 13(9):1110-1120.

    11. [11]

    12. [12]

      RIAZ M A, YUAN Z, MAHMOOD A, LIU F, SUI X, CHEN J, HUANG Q, LIAO X, WEI L, CHEN Y. Sens.Actuators, B, 2020, 319:128243.

    13. [13]

      MENG S, MO Z, LI Z, GUO R, LIU N. Mater. Chem. Phys., 2020, 246:122830.

    14. [14]

      GUO N, LI M, SUN X, WANG F, YANG R. Green Chem., 2017, 19(11):2595-2602.

    15. [15]

      ZHU S, LI J J, HE C N, ZHAO N Q, LIU E Z, SHI C S, ZHANG M. J. Mater. Chem. A, 2015, 3(44):22266-22273.

    16. [16]

      WAN L, HU S Y, LIU J X, CHEN D Q, LIU S S, XIAO R, ZHANG Y, CHEN J, DU C, XIE M J. Ionics, 2020, 26:2549-2561.

    17. [17]

      SENTHIKUMAR S T, PARK S O, KIM J S, HWANG S M. J. Mater. Chem. A, 2017, 5(27):14174-14181.

    18. [18]

      SEVILLA M, FUERTES A B. J. Mater. Chem. A, 2013, 1(44):13738-13741.

    19. [19]

    20. [20]

      ZHANG S, CUI Y, WU B, SONG R, SONG H, ZHOU J, CHEN X, LIU J, CAO L. RSC Adv. 2014, 4(1):505-509.

    21. [21]

      QIAO Z, HWANG S, LI X, WANG C, SAMARAKOOND W, KARAKALOSE S, LI D, CHEN M, HE Y, WANG M, LIU Z, WANG G, ZHOU H, FENG Z, SU D, SPENDELOW J S, WU G. Energy Environ. Sci., 2019, 12(9):2830-2841.

    22. [22]

      SHAO D, WANG C, WANG L, GUO X, GUO J, ZHANG S, LU Y. J. Alloys Compd., 2021, 863:158682.

    23. [23]

      LI H, LV N, LI X, LIU B, FENG J, REN X, GUO T, CHEN D, STODDART J F, GREF R, ZHANG J. Nanoscale, 2017, 9(22):7454-7462.

    24. [24]

      XIAO X, LI X, WANG Z, YAN G, GUO H, HU Q, LI L, LIU Y, WANG J. Appl. Catal., B, 2020, 265:118603.

    25. [25]

      RANDLES J E B. Trans. Faraday Soc., 1948, 44:322-327.

    26. [26]

      SEVCIK A. Collect. Czech. Chem. Commun., 1948, 13:349-377.

    27. [27]

      YANG S, YANG M, YAO X, FA H, WANG Y, HOU C, Sens. Actuators, B, 2020, 320:128294.

    28. [28]

      ANU PRATHAP M U, SATPATI B, SRIVASTAVA R. Sens. Actuators, B, 2013, 186:67-77.

    29. [29]

      ZHANG C J, HAN M M, YU L L, QU L B, LI Z H. J. Electroanal. Chem., 2021, 890:115232.

    30. [30]

      ATTA N F, GALAL A, EL-GOHARY A R M. J. Hazard. Mater., 2020, 388:122038.

    31. [31]

      HUANG L L, CAO Y Y, DIAO D F. Sens. Actuators, B, 2020, 305:127495.

    32. [32]

      DENG M, LIN S R, BO X J, GUO L P. Talanta, 2017, 174:527-538.

    33. [33]

      ZHANG T T, GUO H, YANG M, SUN L, ZHANG J Y, WANG M Y, YANG F, WU N, YANG W. Microchem. J., 2022, 175:107139.

    34. [34]

      YIN D D, LIU J, BO X J, GUO L P. Anal. Chim. Acta, 2020, 1093:35-42.

  • 加载中
    1. [1]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    2. [2]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    3. [3]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    4. [4]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    5. [5]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    6. [6]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    7. [7]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    10. [10]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    11. [11]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    12. [12]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    13. [13]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    19. [19]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    20. [20]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

Metrics
  • PDF Downloads(8)
  • Abstract views(687)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return