Citation: HUANG Xiao-Mei,  DENG Xiang,  XING Lang-Man,  CHEN Wei,  SUN Li,  ZHU Xiao-Yu. An Electrochemiluminescence Sensor Based on Gold and Silver Bimetal Nanocluster and Ternary Carbon Nanosheets for Detection of Alpha Fetoprotein[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(10): 1567-1577. doi: 10.19756/j.issn.0253-3820.221029 shu

An Electrochemiluminescence Sensor Based on Gold and Silver Bimetal Nanocluster and Ternary Carbon Nanosheets for Detection of Alpha Fetoprotein

  • Corresponding author: HUANG Xiao-Mei, huangxm917@163.com
  • Received Date: 17 January 2022
    Revised Date: 30 June 2022

    Fund Project: Supported by the Scientific Research Fund of the Sichuan Provincial Science and Technology Department (No.2019YJ0307), the Key Laboratory of Exploitation and Study of Distinctive Plants in Education Department of Sichuan Province (No.TSZW2005, TSZW2004), the Opening Project of Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education (No.LYJ1802), the Dazhou Municipal Science Project of Technology Bureau Application Foundation (No.18YYJC0002) and the National University Innovation and Entrepreneurship Training Program(No.202110644011).

  • Carbon-based transition metal oxide nanosheets metal-organic framework material(Pd NPs-Cu(Ⅱ)Co(Ⅱ)@C) were prepared by one-step room temperature process, pyrolysis in air, and in-situ reduction method. Then the Au-Ag NCs-TAEA-Pd NPs-Cu(Ⅱ)Co(Ⅱ)@C ternary luminescent composite nanomaterials were synthesized for the first time with gold-silver bimetallic nanoclusters (Au-Ag NCs) as luminophor, tri-(3-aminoethyl) amine (TAEA) as coreactant and Pd NPs-Cu(Ⅱ)Co(Ⅱ)@C as coreaction accelerator. A sandwich electrochemiluminescence (ECL) immunosensor was thus constructed by combining the ternary luminescent composite with alpha fetoprotein (AFP) secondary antibody as capture probe for ultra-sensitive detection of AFP. The ternary Au-Ag NCs-TAEA-Pd NPs-Cu(Ⅱ)Co(Ⅱ)@C luminescent nanocomposites had excellent ECL properties due to the dual catalytic synergy of intramolecular coreaction promoters and intramolecular coreactants, and the "silver effect" of bimetallic nanoclusters. Without any additional signal amplification strategy, the detection range of the ECL biosensor for AFP was 0.001-100 ng/mL, and the detection limit was as low as 0.3 pg/mL. Moreover, the proposed ECL immunosensor was expected to be applied to the diagnosis and bioanalysis of other biomolecules.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      DING M M, CHEN J, JIANG M W, ZHANG X J, WANG G F. J. Mater. Chem. A, 2019, 7(23):14163-14168.

    4. [4]

      LI Y W, ZHAO T, LU M T, WU Y H, XIE Y B, XU H, GAO J K, YAO J M, QIAN G D, ZHANG Q C. Small, 2019, 15(43):1901940.

    5. [5]

    6. [6]

    7. [7]

      ZHANG G Y, LI M J, YU K, CHAI H N, XU S H, XU T L, QU L J, ZHANG X J. ACS Appl. Bio. Mater., 2021, 4(2):1616-1623.

    8. [8]

      CUI L, ZHAO M H, LI C C, WANG Q B, LUO X L, ZHANG C Y. Anal. Chem., 2021, 93(5):2974-2978

    9. [9]

      ARCHANA V, YANG X, FANG R Y, KUMAR G G. ACS Sustainable Chem. Eng., 2019, 7(7):6707-6719.

    10. [10]

      TALIN A A, CENTRONE A, FORD A C, FOSTER M E, STAVILA V, HANEY P. Science, 2014, 343(6166):66-69.

    11. [11]

      CHAIKITTISILP W, TORAD N L, LI C L, IMERA M, SUZUKI N, ISHIHARA S, ARIGA K, YAMAUCHI Y. Chem.-Eur. J., 2014, 20(15):4217-4221.

    12. [12]

      ZHANG L, DING Y R, LI R R, YE C, ZHAO G Y, WANG Y. J. Mater. Chem. B, 2017, 5(28):5549-5555.

    13. [13]

      ZHUANG X Y, ZHANG X D, CHEN Q M, LI S Q, CAO H Y, HUANG Y M. Mater. Sci. Eng. C, 2019, 94:858-866.

    14. [14]

    15. [15]

      KADIMISETTY K, MALLA S, SARDESAI N P, JOSHI A A, FARIA R C, LEE N H, RUSLING J F. Anal. Chem., 2015, 87(8):4472-4478.

    16. [16]

    17. [17]

      CUI L, ZHOU J H, LI C C, DENG S Y, GAO W Q, ZHANG X M, LUO X L, WANG X L, ZHANG C Y. ACS Appl. Mater. Interfaces, 2021, 13(24):28782-28789.

    18. [18]

      LI Y Y, LIU D, MENG S Y, ZHANG J Y, LI L B, YOU T Y. Anal. Chem., 2022, 94(2):1294-1301.

    19. [19]

      KAMYABI M A, ALIPOUR Z, MOHARRAMNEZHAD M. J. Solid State Electrochem., 2021, 25(2):445-456.

    20. [20]

      ZHU H Y, DING S N. Biosens. Bioelectron., 2019, 134:109-116.

    21. [21]

      WANG T Y, WANG D C, PADELFORD J W, JIANG J, WANG G L. J. Am. Chem. Soc., 2016, 138(20):6380-6383.

    22. [22]

      KANG Y, KIM J. ChemElectroChem, 2020, 7(5):1092-1096.

    23. [23]

      FU L, GAO X Y, DONG S T, HSU H Y, ZOU G Z. Anal. Chem., 2021, 93(11):4909-4915.

    24. [24]

      GE J J, CHEN X F, YANG J L, WANG Y Y. Analyst, 2021, 146(3):803-815.

    25. [25]

      MUZYKA K, SAQIB M, LIU Z Y, ZHANG W, XU G B. Biosens. Bioelectron., 2017, 92:241-258.

    26. [26]

      YANG X, YU Y Q, PENG L Z, LEI Y M, CHAI Y Q, YUAN R, ZHUO Y. Anal. Chem., 2018, 90(6):3995-4002.

    27. [27]

      WANG H J, YUAN Y L, CHAI Y Q, YUAN R. Biosens. Bioelectron., 2015, 68:72-77.

    28. [28]

      CARRARA S, ARCUDI F, PRATO M, DE COLA L. Angew. Chem., Int. Ed., 2017, 56(17):4757-4761.

    29. [29]

      WU F F, ZHOU Y, ZHANG H, YUAN R, CHAI Y Q. Anal. Chem., 2018, 90(3):2263-2270.

    30. [30]

      HUANG Y Z, JIANG Y X, ZOU L, CHENG J F, CHI B, PU J, LI J. J. Electrochem. Soc., 2017, 164(14):A3896-A3902.

    31. [31]

      ZHAI Q F, XING H H, ZHANG X W, LI J, WANG E K. Anal. Chem., 2017, 89(14):7788-7794.

    32. [32]

      HUANG X M, DENG X, QI W J, WU D. Sens. Actuators, B, 2018, 273:466-472.

    33. [33]

      LIU J B, ZHAO R S, WANG X, GAO X W, ZOU G Z. Chem. Commun., 2020, 56(42):5665-5668.

    34. [34]

      ZHOU Y, CHEN S H, LUO X L, CHAI Y Q, YUAN R. Anal. Chem., 2018, 90(16):10024-10030.

    35. [35]

      GAO K, QIAO X W, HONG C L. Micro Nano Lett., 2018, 13(1):58-62.

    36. [36]

    37. [37]

      LI Y K, DONG L Y, WANG X F, LIU Y, LIU H L, XIE M X. Spectrochim. Acta, 2018, 196:103-109.

    38. [38]

      ZHANG Z, GUAN Y P, XU G L, GUO C. Microchem. J., 2019, 147:824-831.

    39. [39]

      LI X J, GUO Q F, CAO W, LI Y Y, DU B, WEI Q. Anal. Biochem., 2014, 457(15):59-64.

    40. [40]

      ZHENG X L, HUA X X, QIAO X Y, XIA F Q, ZHOU C L. RSC Adv., 2016, 6(26):21308-21316.

  • 加载中
    1. [1]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    2. [2]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    3. [3]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    4. [4]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    5. [5]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    9. [9]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    12. [12]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    16. [16]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    17. [17]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    20. [20]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

Metrics
  • PDF Downloads(8)
  • Abstract views(399)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return