Citation: LIU Jia-Li,  DENG Yan,  LI Qiu-Xia,  GUAN Yan,  YANG Tong,  MENG Shuang,  YANG Yun-Hui,  HU RONG. Development of DNA Sensor Based on Tetrahedral DNA Nanomaterials[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(9): 1308-1318. doi: 10.19756/j.issn.0253-3820.221024 shu

Development of DNA Sensor Based on Tetrahedral DNA Nanomaterials

  • Corresponding author: YANG Yun-Hui,  HU RONG, 
  • Received Date: 12 January 2022
    Revised Date: 22 June 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.21765026).

  • Tetrahedral DNA nanomaterial (TDN) is a simple and strong pyramidal three-dimensional structure model. It has the advantages such as superior mechanical properties, stable structure, simple synthesis method, high synthesis yield, and unique specific recognition performance. In this work, a TDN-based electrochemical sensing platform was constructed for highly sensitive detection of DNA. By using Fe-metal organic framework (Fe-MOF) as signal probe, the detection did not require acid treatment and pretreatment process, which could save detection time. In addition, Fe-MOF was easy to functionalize. After the surface was loaded with precious metal nanoparticles, it was easy to modify nucleic acid or protein molecules, which could simplify the modification process. By using graphene-nano-gold particle composite materials with excellent performance as the substrate, it could further improve the sensitivity. When the target DNA was present, the purpose of detecting DNA was achieved by detecting the signal peak in the Fe-MOF material. In the concentration range of 0.01-140 pmol/L, the linear equation was I=2.858 × lgc(pmol/L)+6.488 (R2=0.9935), and the detection limit (3σ) was 4.5 fmol/L.
  • 加载中
    1. [1]

      GUT I G. Hum. Mutat., 2001, 17(6):475-492.

    2. [2]

      WANG J, CAI K, ZHANG R, HE X, MA X. Anal. Chem., 2020, 92(13):9399-9404.

    3. [3]

      LIU J L, MA Y C, YANG T, HU R, YANG Y H. Microchim. Acta, 2021, 188(8):266.

    4. [4]

      SCHORKN J, FALLIN D, LANCHBURY S. Clin. Genet., 2010, 58(4):250-264.

    5. [5]

      WANG C C, CHEN C A, JONG Y J, KOU H S. Anal. Chem., 2018, 90:11599-11606.

    6. [6]

      KAUSAR A, OSMAN E A, GADZIKWA T. Analyst, 2016, 141:4272-4277.

    7. [7]

      QIU L P, WU Z S, SHEN G L, YU R Q. Anal. Chem., 2011, 83:3050-3057.

    8. [8]

      CAGNIN S, CARABALLO M, GUIDUCCI C, MARTINI P, ROSS M, SANTAANA M, DANLEY D, WEST T, LANFRANCHI G. Sensors, 2009, 9(4):3122-3148.

    9. [9]

      ROZYCKA M, COLINS N, STRATTON M R, WOOSTER R. Genomics, 2000, 70(1):34-40.

    10. [10]

      TIMOTHY J G, LLOYD M S. Anal. Chem., 2000, 72(14):3298-3302.

    11. [11]

      RUIZ-PONTE C, CARRACEDO A, BARROS F. Clin. Chim. Acta, 2006, 363(1-2):138-146.

    12. [12]

      EDDAOUDI M, KIM J, ROSI N, VODAK D, WACHTER J, O'KEEFFE M, YAGHI O M. Science, 2002, 295(5554):469-472.

    13. [13]

      DAVYDOVSKAYA P, RANFT A, LOTSCH B V. Anal. Chem., 2014, 86(14):6948-6958.

    14. [14]

      YU L Q, YAN X P. Chem. Commun., 2013, 49(21):2142-2144.

    15. [15]

      XIA W, MAHMOOD A, ZOU R Q, XU Q. Energy Environ. Sci., 2015, 8(7):1837-1866.

    16. [16]

      NA K, CHOI K M, YAGHI O M, SOMORJAIG A. Nano Lett., 2014, 14(10):5979-5983.

    17. [17]

      VALVEKENS P, VANDICHEL M, WAROQUIER M, VAN SPEYBROECK V, VOS D D. J. Catal., 2014, 317:1-10.

    18. [18]

      SIMON-YARZA T, MIELCAREK A, COUVREUR P, SERRE C. Adv. Mater., 2018, 30(37):1707365.

    19. [19]

      ZHANG L Y, LIU C, GAO Y, LI Z H, XING J, REN W Z, ZHANG L L, LI A G, LU G M, WU A G, ZENG L Y. Adv. Healthcare Mater., 2018, 7(24):1801144.

    20. [20]

      CUI C L, LIU Y Y, XU H B, LI S Z, ZHANG W N, CUI P, HUO F W. Small, 2014, 10(18):3672-3676.

    21. [21]

      LI D L, ZHANG X, MA Y C, DENG Y, HU R, YANG Y H. Anal. Method, 2018, 10(26):3273-3279.

    22. [22]

      LIU T Z, HU R, ZHANG X, ZHANG K L, LIU Y, ZHANG X B, BAI R Y, LI D L, YANG Y H. Anal. Chem., 2016, 88(24):12516-12523.

    23. [23]

      BU N N, TANG C X, HE X W, YIN X B. Chem. Commun., 2011, 47(27):7689-7691.

    24. [24]

      PEI H, ZUO X L, PAN D, SHI J Y, HUANG Q, FAN C H. NPG Asia Mater., 2013, 5(6):51.

    25. [25]

      WANG D F, VIETZ C, SCHROEDER T, ACUNNA G, LALKENS B, TINNEFELD P. Nano Lett., 2017, 17(9):5368-5374.

    26. [26]

      WANG J S, QIN H S, WANG F M, REN J S, QU X G. Chem.-Eur. J., 2017, 23(47):11226-11229.

    27. [27]

      WANG J P, LEONG M C E, LEONG Z W, KUAN W S, LEONG D T. Anal. Chem., 2017, 89(12):6900-6906.

    28. [28]

      WANG S, ZHANG L Q, WAN S, CANSIZ S, CUI C, LIU Y, CAI R, HONG C Y, TENG I T, SHI M L, WU Y, DONG Y Y, TAN W H. ACS Nano, 2017, 11(4):3943-3949.

    29. [29]

      LIN Y, JIA J P, YANG R, CHEN D Z, WANG J, LUO F, GUO L H, QIU B, LIN Z Y. Anal. Chem., 2019, 91(5):3717-3724.

    30. [30]

      PEI H, LU N, WEN Y L, SONG S P, LIU Y, YAN H, FAN C H. Adv. Mater., 2010, 22(42):4754-4758.

    31. [31]

      LIN M H, SONG P, ZHOU G B, ZUO X L, ALDALBAHI A, LOU X D, SHI J Y, FAN C H. Nat. Protoc., 2016, 11(7):1244-1263.

    32. [32]

      FRENS G. Nat. Phys. Sci., 1973, 241(105):20-22.

    33. [33]

      TAYLOR-PASHOW K M L, DELLA R J, XIE Z G, TRAN S, LIN W B. J. Am. Chem. Soc., 2009, 131(40):14261-14263.

    34. [34]

    35. [35]

    36. [36]

      CHEN Z B, TAN L L, HU L Y, ZHANG Y M, WANG S X, LV F Y. ACS Appl. Mater. Interfaces, 2016, 8(1):102-108.

    37. [37]

      YANG J M, DOU B T, YUAN R, XIANG Y. Anal. Chem., 2017, 89(9):5138-5143.

    38. [38]

      ZHANG Q X, FAN G C, CHEN W, LIU Q, ZHANG X, ZHANG X X, LIU Q Y. Biosens. Bioelectron., 2020, 150:111846.

    39. [39]

      LIU Z H, YU T Y, WEI D M, LI Z. Chem. Commun., 2020, 56(13):1976-1979.

    40. [40]

      FAN T T, DU Y, YAO Y, WU J, MENG S, LUO J J, ZHANG X, YANG D Z, WANG C Y, QIAN Y, GAO F L. Sens. Actuators, B, 2018, 266:9-18.

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    3. [3]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    4. [4]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    5. [5]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    6. [6]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    7. [7]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    8. [8]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    9. [9]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    10. [10]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    11. [11]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    15. [15]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(7)
  • Abstract views(358)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return