Citation:
ZHANG Yu-Yu, HUANG Ya-Yue, ZENG Hui, YANG Tao, LUO Xi-Liang. Electrochemical Sensing Interface Based on Synergistic Antifouling of Polyethylene Glycol and Chondroitin Sulfate for Sensitive Detection of tlh Gene Segment of Vibrio Parahaemolyticus[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(7): 1041-1047.
doi:
10.19756/j.issn.0253-3820.221021
-
Foodborne pathogens are the main cause of seafood poisoning in the world, and the traditional electrochemical detection methods have always suffered from nonspecific adsorption and serious biological fouling in the practical complex samples. Therefore, it is urgent to develop antifouling and sensitive biosensor platforms for detecting foodborne pathogens in complex matrix. In this study, by integrating polyethylene glycol (PEG) with good hydrophilicity and chondroitin sulfate (CS) with excellent biocompatibility, an electrochemical DNA sensing interface for detection of the tlh gene segment of Vibrio parahaemolyticus based on synergistic antifouling of PEG and CS was constructed. Compared with sole poly(m-aminobenzoic acid) modified glassy carbon electrode (PABA/GCE), PEG/PABA/GCE and CS/PABA/GCE, CS/PEG/PABA/GCE exhibited many advantages such as excellent anti-protein (single protein and complex skim milk) adsorption performance and stability. Moreover, the sensing interface showed high sensitivity and satisfactory selectivity to the tlh gene segment in the range of 1.0×10-20-1.0×10-8 mol/L with a detection limit of 3.3×10-21 mol/L.
-
-
-
[1]
XUE L, ZHENG L, ZHANG H L, JIN X, LIN J H. Sens. Actuators, B, 2018, 265:318-325.
-
[2]
ZHU P, GAO W F, HUANG H L, JIANG J P, CHEN X F, FAN J Z, YAN X J. Food Anal. Method, 2018, 11:2076-2084.
-
[3]
NIGRO O D, STEWARD G F. J. Microbiol. Methods, 2015, 111:24-30.
-
[4]
BAYAT M, KHABIRI A, HEMATI B. Can. J. Infect. Dis. Med. Microbiol., 2019, 2019:4164982.
-
[5]
TABATABAEI M S, ISLAM R, AHMED M. Anal. Chim. Acta, 2021, 1143:250-266.
-
[6]
LI Y, LIU H M, HUANG H, DENG J, FANG L C, LUO J, ZHANG S, HUANG J, LIANG W B, ZHENG J S. Biosens. Bioelectron., 2020, 147:111752.
-
[7]
-
[8]
QIU Q M, CHEN H Y, YING S N, SHARIF S, YOU Z H, WANG Y X, YING Y B. Microchim. Acta, 2019, 186(2):93.
-
[9]
WANG M, ZENG J, WANG J Q, WANG X, WANG Y, GAN N. Microchim. Acta, 2021, 188(8):244.
-
[10]
-
[11]
ZHANG Z G, ZHOU J, DU X. Micromachines, 2019, 10(4):222.
-
[12]
LIN P H, LI B R. Analyst, 2020, 145(4):1110-1120.
-
[13]
CUI M, SONG Z, WU Y, GUO B, FAN X, LUO X L. Biosens. Bioelectron., 2016, 79:736-741.
-
[14]
HUI N, SUN X, SONG Z, NIU S, LUO X L. Biosens. Bioelectron., 2016, 86:143-149.
-
[15]
CUI M, WANG Y, JIAO M, JAYACHANDRAN S, WU Y, FAN X, LUO X L. ACS Sens., 2017, 2(4):490-494.
-
[16]
WANG G, HAN R, SU X, LI Y, XU G, LUO X L. Biosens. Bioelectron., 2017, 92:396-401.
-
[17]
XU Z Y, HAN R, LIU N Z, GAO F X, LUO X L. Sens. Actuators, B, 2020, 319:128253.
-
[18]
XIA Y Q, ADIBNIA V, SHAN C C, HUANG R L, QI W, HE Z M, XIE G J, OLSZEWSKI M, DE CRESCENZO G, MATYJASZEWSKI K, BANQUY X, SU R X. Langmuir, 2019, 35(48):15535-15542.
-
[19]
YE H J, HAN M Y, HUANG R L, SCHMIDT T A, QI W, HE Z M, MARTIN L L, JAY G D, SU R X, GREENE G W. ACS Appl. Mater. Interfaces, 2019, 11(20):18090-18102.
-
[20]
CHEN L H, LV S L, LIU M C, CHEN C F, SHENG J L, LUO X L. ACS Appl. Nano Mater., 2018, 1(6):2489-2495.
-
[21]
ZHAO S Y, ZHOU Y X, WEI L, CHEN L H. Anal. Chim. Acta, 2020, 1126:91-99.
-
[22]
YANG T, CHEN H Y, QIU Z W, YU R Z, LUO S Z, LI W H, JIAO K. ACS Appl. Mater. Interfaces, 2018, 10(5):4540-4547.
-
[23]
ZHU W C, HUANG H, GAO X C, MA H Y. Mater. Sci. Eng. C, 2014, 45:21-28.
-
[24]
WANG S, MA Y H, WANG Y, JIAO M X, LUO X L, CUI M. Colloids Surf., B, 2020, 186:110706.
-
[25]
LIU N Z, SONG J Y, LU Y W, DAVIS J J, GAO F X, LUO X L. Anal. Chem., 2019, 91(13):8334-8340.
-
[26]
HUI N, SUN X T, NIU S Y, LUO X L. ACS Appl. Mater. Interfaces, 2017, 9(3):2914-2923.
-
[27]
FIGUERO-MIRANDA G, WU C T, ZHANG Y T, NOERBEL L, LO Y, TANNER J A, ELLING L, OFFENHAUSSER A, MAYER D. Bioelectrochemistry, 2020, 136:107589.
-
[1]
-
-
-
[1]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[2]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[3]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[4]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[5]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[6]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[7]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[8]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021
-
[9]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[10]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[11]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[12]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[13]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[14]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[15]
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059
-
[16]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[17]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[18]
Renxiu Zhang , Xin Zhao , Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116
-
[19]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[20]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[1]
Metrics
- PDF Downloads(6)
- Abstract views(504)
- HTML views(97)